Your browser doesn't support javascript.
loading
Machine Learning Methods in Protein-Protein Docking.
Michalik, Ilona; Kuder, Kamil J.
Affiliation
  • Michalik I; Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
  • Kuder KJ; Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland. kamil.kuder@uj.edu.pl.
Methods Mol Biol ; 2780: 107-126, 2024.
Article de En | MEDLINE | ID: mdl-38987466
ABSTRACT
An exponential increase in the number of publications that address artificial intelligence (AI) usage in life sciences has been noticed in recent years, while new modeling techniques are constantly being reported. The potential of these methods is vast-from understanding fundamental cellular processes to discovering new drugs and breakthrough therapies. Computational studies of protein-protein interactions, crucial for understanding the operation of biological systems, are no exception in this field. However, despite the rapid development of technology and the progress in developing new approaches, many aspects remain challenging to solve, such as predicting conformational changes in proteins, or more "trivial" issues as high-quality data in huge quantities.Therefore, this chapter focuses on a short introduction to various AI approaches to study protein-protein interactions, followed by a description of the most up-to-date algorithms and programs used for this purpose. Yet, given the considerable pace of development in this hot area of computational science, at the time you read this chapter, the development of the algorithms described, or the emergence of new (and better) ones should come as no surprise.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Algorithmes / Protéines / Biologie informatique / Simulation de docking moléculaire / Apprentissage machine Limites: Humans Langue: En Journal: Methods Mol Biol Sujet du journal: BIOLOGIA MOLECULAR Année: 2024 Type de document: Article Pays d'affiliation: Pologne Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Algorithmes / Protéines / Biologie informatique / Simulation de docking moléculaire / Apprentissage machine Limites: Humans Langue: En Journal: Methods Mol Biol Sujet du journal: BIOLOGIA MOLECULAR Année: 2024 Type de document: Article Pays d'affiliation: Pologne Pays de publication: États-Unis d'Amérique