Your browser doesn't support javascript.
loading
Alkaline amino acid modification based on biological phytic acid for preparing flame-retardant and antibacterial cellulose-based fabrics.
Wang, Bao-Hong; Zhang, Li-Yao; Song, Wan-Meng; Liu, Yun.
Affiliation
  • Wang BH; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Zhang LY; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Song WM; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
  • Liu Y; College of Textiles & Clothing, Institute of Functional Textiles and Advanced Materials, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao Key Laboratory of Flame-Retardant Textile Materials,
Int J Biol Macromol ; 276(Pt 2): 134002, 2024 Jul 18.
Article de En | MEDLINE | ID: mdl-39032909
ABSTRACT
Cellulose-based fabrics have significant advantages, but their application scenarios are limited due to their flammability. This work used biomass phytic acid and protein decomposition products, alkaline amino acids (arginine, lysine, histidine) to prepare alkaline amino acid flame retardants (PALA, PALL, PALH), and they were utilized to endow Lyocell fabrics with flame-retardant and antibacterial properties. When the weight gain was about 16.0 wt%, PALA exhibited better flame-retardant effect, and the limited oxygen index value of PALA-Lyocell reached 47.1 %. In the cone calorimetry test, PALA showed the best flame-retardant efficiency in reducing flame growth index with a 92.0 % decrease in peak heat release rate. The results of thermogravimetric analysis coupled with Fourier Transform Infrared spectroscopy (TG-FTIR) and char residues indicated that the flame-retardant property of alkaline amino acid flame retardants was formed through the combined action of gas and condensed phases. In the antibacterial test, PALA had the highest antibacterial rate against Staphylococcus aureus at 97.2 %. Mechanical property, handle feeling, and whiteness results had indicated that alkaline amino acid based flame retardants had little effect on the physical properties of Lyocell fabrics. This work confirms alkaline amino acid based flame retardants have functions of flame-retardant and antibacterial properties, providing reference for the practical value of biomass in cellulose-based fabrics.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article