Your browser doesn't support javascript.
loading
Highly efficient pure-blue organic light-emitting diodes based on rationally designed heterocyclic phenophosphazinine-containing emitters.
Xing, Longjiang; Wang, Jianghui; Chen, Wen-Cheng; Liu, Bo; Chen, Guowei; Wang, Xiaofeng; Tan, Ji-Hua; Chen, Season Si; Chen, Jia-Xiong; Ji, Shaomin; Zhao, Zujin; Tang, Man-Chung; Huo, Yanping.
Affiliation
  • Xing L; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Wang J; State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, 510640, Guangzhou, P. R. China.
  • Chen WC; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China. wencchen@gdut.edu.cn.
  • Liu B; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, 515200, Jieyang, P. R. China. wencchen@gdut.edu.cn.
  • Chen G; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Wang X; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Tan JH; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Chen SS; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Chen JX; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, P. R. China.
  • Ji S; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Zhao Z; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, 515200, Jieyang, P. R. China.
  • Tang MC; School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, 510006, Guangzhou, P. R. China.
  • Huo Y; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, 515200, Jieyang, P. R. China.
Nat Commun ; 15(1): 6175, 2024 Jul 22.
Article de En | MEDLINE | ID: mdl-39039042
ABSTRACT
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays de publication: Royaume-Uni