Your browser doesn't support javascript.
loading
Mechanistic insights into sulfadimethoxine degradation via microbially driven Fenton reactions.
Zhang, Lan; Wang, Yan; Chen, Xiang; Hang, Xiaoshuai; Liu, Yun.
Affiliation
  • Zhang L; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
  • Wang Y; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
  • Chen X; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
  • Hang X; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China. Electronic address: hangxiaoshuai@163.com.
  • Liu Y; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address: yliu@issas.ac.cn.
J Hazard Mater ; 477: 135260, 2024 Sep 15.
Article de En | MEDLINE | ID: mdl-39047553
ABSTRACT
Biodegradation, while cost-effective, is hindered by the requirement for specialized microorganisms and co-contaminants. Innovative biological technologies like the microbially driven Fenton reaction, hold promise for enhancing degradation efficiency. However, the intricate biochemical processes and essential steps for effective degradation in such systems have remained unclear. In this study, we harnessed the potential of the microbially driven Fenton reaction by employing Shewanella oneidensis MR-1 (MR-1). Our approach showcased remarkable efficacy in degrading a range of contaminants, including sulfadimethoxine (SDM), 4,4'-dibromodiphenyl ether (BDE-15) and atrazine (ATZ). Using SDM as a model contaminant of emergent contaminants (ECs), we unveiled that biodegradation relied on the generation of hydroxyl radicals (•OH) and involvement of oxidoreductases. Transcriptomic analysis shed light on the pivotal components of extracellular electron transfer (EET) during both anaerobic and aerobic periods. The presence of reactive oxidizing species induced cellular damage and impeded DNA repair, thereby affecting the Mtr pathway of EET. Moreover, the formation of vivianite hindered SDM degradation, underscoring the necessity of maintaining iron ions in the solution to ensure sustainable and efficient degradation. Overall, this study offers valuable insights into microbial technique for ECs degradation, providing a comprehensive understanding of degradation mechanisms during aerobic/anaerobic cycling.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Sulfadiméthoxine / Dépollution biologique de l'environnement / Radical hydroxyle / Shewanella / Peroxyde d'hydrogène / Fer Langue: En Journal: J Hazard Mater / J. hazard. mater / Journal of hazardous materials Sujet du journal: SAUDE AMBIENTAL Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Sulfadiméthoxine / Dépollution biologique de l'environnement / Radical hydroxyle / Shewanella / Peroxyde d'hydrogène / Fer Langue: En Journal: J Hazard Mater / J. hazard. mater / Journal of hazardous materials Sujet du journal: SAUDE AMBIENTAL Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Pays-Bas