Your browser doesn't support javascript.
loading
MicroRNAs as Regulators of Radiation-Induced Oxidative Stress.
Kura, Branislav; Pavelkova, Patricia; Kalocayova, Barbora; Pobijakova, Margita; Slezak, Jan.
Affiliation
  • Kura B; Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia.
  • Pavelkova P; Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia.
  • Kalocayova B; Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia.
  • Pobijakova M; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
  • Slezak J; Department of Radiation Oncology, Bory Hospital-Penta Hospitals, 841 03 Bratislava, Slovakia.
Curr Issues Mol Biol ; 46(7): 7097-7113, 2024 Jul 06.
Article de En | MEDLINE | ID: mdl-39057064
ABSTRACT
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Curr Issues Mol Biol / Curr. issues mol. biol. (Print) / Current issues in molecular biology (Print) Sujet du journal: BIOLOGIA MOLECULAR Année: 2024 Type de document: Article Pays d'affiliation: Slovaquie Pays de publication: Suisse

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Curr Issues Mol Biol / Curr. issues mol. biol. (Print) / Current issues in molecular biology (Print) Sujet du journal: BIOLOGIA MOLECULAR Année: 2024 Type de document: Article Pays d'affiliation: Slovaquie Pays de publication: Suisse