Your browser doesn't support javascript.
loading
Functional architecture of intracellular oscillations in hippocampal dendrites.
Liao, Zhenrui; Gonzalez, Kevin C; Li, Deborah M; Yang, Catalina M; Holder, Donald; McClain, Natalie E; Zhang, Guofeng; Evans, Stephen W; Chavarha, Mariya; Simko, Jane; Makinson, Christopher D; Lin, Michael Z; Losonczy, Attila; Negrean, Adrian.
Affiliation
  • Liao Z; Department of Neuroscience, Columbia University, New York, USA.
  • Gonzalez KC; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Li DM; Department of Neuroscience, Columbia University, New York, USA.
  • Yang CM; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Holder D; Department of Neuroscience, Columbia University, New York, USA.
  • McClain NE; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Zhang G; Department of Neuroscience, Columbia University, New York, USA.
  • Evans SW; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Chavarha M; Department of Neuroscience, Columbia University, New York, USA.
  • Simko J; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Makinson CD; Department of Neuroscience, Columbia University, New York, USA.
  • Lin MZ; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
  • Losonczy A; Department of Neurobiology, Stanford University, Stanford, USA.
  • Negrean A; Department of Neurobiology, Stanford University, Stanford, USA.
Nat Commun ; 15(1): 6295, 2024 Jul 26.
Article de En | MEDLINE | ID: mdl-39060234
ABSTRACT
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cellules pyramidales / Dendrites / Région CA1 de l'hippocampe Limites: Animals Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cellules pyramidales / Dendrites / Région CA1 de l'hippocampe Limites: Animals Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: Royaume-Uni