Your browser doesn't support javascript.
loading
On the Resolution Limit of Electrohydrodynamic Redox 3D Printing.
Menétrey, Maxence; Kupferschmid, Cédric; Gerstl, Stephan; Spolenak, Ralph.
Affiliation
  • Menétrey M; Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland.
  • Kupferschmid C; Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland.
  • Gerstl S; Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich 8093, Switzerland.
  • Spolenak R; Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland.
Small ; : e2402067, 2024 Aug 02.
Article de En | MEDLINE | ID: mdl-39092685
ABSTRACT
Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s-1) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Small Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Suisse

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Small Sujet du journal: ENGENHARIA BIOMEDICA Année: 2024 Type de document: Article Pays d'affiliation: Suisse