Your browser doesn't support javascript.
loading
Pan-cancer analyses reveal the molecular and clinical characteristics of TET family members and suggests that TET3 maybe a potential therapeutic target.
Zhang, Chunyan; Zheng, Jie; Liu, Jin; Li, Yanxia; Xing, Guoqiang; Zhang, Shupeng; Chen, Hekai; Wang, Jian; Shao, Zhijiang; Li, Yongyuan; Jiang, Zhongmin; Pan, Yingzi; Liu, Xiaozhi; Xu, Ping; Wu, Wenhan.
Affiliation
  • Zhang C; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Zheng J; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China.
  • Liu J; High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai, China.
  • Li Y; Department of Pathology, Tianjin Fifth Central Hospital, Tianjin, China.
  • Xing G; North China University of Science and Technology, Tangshan, Hebei, China.
  • Zhang S; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China.
  • Chen H; High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai, China.
  • Wang J; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Shao Z; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Li Y; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Jiang Z; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Pan Y; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Liu X; High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai, China.
  • Xu P; Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China.
  • Wu W; High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai, China.
Front Pharmacol ; 15: 1418456, 2024.
Article de En | MEDLINE | ID: mdl-39104395
ABSTRACT
The Ten-Eleven Translocation (TET) family genes are implicated in a wide array of biological functions across various human cancers. Nonetheless, there is a scarcity of studies that comprehensively analyze the correlation between TET family members and the molecular phenotypes and clinical characteristics of different cancers. Leveraging updated public databases and employing several bioinformatics analysis methods, we assessed the expression levels, somatic variations, methylation levels, and prognostic values of TET family genes. Additionally, we explored the association between the expression of TET family genes and pathway activity, tumor microenvironment (TME), stemness score, immune subtype, clinical staging, and drug sensitivity in pan-cancer. Molecular biology and cytology experiments were conducted to validate the potential role of TET3 in tumor progression. Each TET family gene displayed distinct expression patterns across at least ten detected tumors. The frequency of Single Nucleotide Variant (SNV) in TET genes was found to be 91.24%, primarily comprising missense mutation types, with the main types of copy number variant (CNV) being heterozygous amplifications and deletions. TET1 gene exhibited high methylation levels, whereas TET2 and TET3 genes displayed hypomethylation in most cancers, which correlated closely with patient prognosis. Pathway activity analysis revealed the involvement of TET family genes in multiple signaling pathways, including cell cycle, apoptosis, DNA damage response, hormone AR, PI3K/AKT, and RTK. Furthermore, the expression levels of TET family genes were shown to impact the clinical staging of tumor patients, modulate the sensitivity of chemotherapy drugs, and thereby influence patient prognosis by participating in the regulation of the tumor microenvironment, cellular stemness potential, and immune subtype. Notably, TET3 was identified to promote cancer progression across various tumors, and its silencing was found to inhibit tumor malignancy and enhance chemotherapy sensitivity. These findings shed light on the role of TET family genes in cancer progression and offer insights for further research on TET3 as a potential therapeutic target for pan-cancer.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Front Pharmacol Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Front Pharmacol Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse