Mechanical properties and formulation of hydrophilic fiber and shrimp shell combination as a novel eco-friendly dental restoration material.
Heliyon
; 10(14): e34180, 2024 Jul 30.
Article
de En
| MEDLINE
| ID: mdl-39114082
ABSTRACT
This study evaluates the mechanical properties and formulation of dental restoration material comprised of cellulose acetate (CA) from water hyacinth and chitosan (C) from white shrimp shells. The research phases included extraction, formulation, functional group testing, antibacterial, toxicity, water absorption and solubility, compressive, shear, tensile, hardness, microleakage, thermal expansion, and shrinkage. The experimental data were analyzed using probit regression, one-way ANOVA, and Kruskal-Wallis test. The data showed that CA and C had microxyl and amine groups, could inhibit S. mutans, and were non-toxic. Composite resins were divided into nine formulations with different concentrations F1 (1 % CA + 3 % C), F2 (1 % CA + 5 % C), F3 (1 % CA + 7 % C), F4 (3 % CA + 3 % C), F5 (3 % CA + 5 % C), F6 (3 % CA + 7 % C), F7 (5 % CA + 3 % C), F8 (5 % CA + 5 % C), and F9 (5 % CA + 7 % C). The F9 has mechanical strength close to the control group, with 113.33 µg/mm3 absorption, 80 µg/mm3 solubility, 32.67 Mpa compressive strength, 17.18 Mpa tensile strength, and no shrinkage. It shows that F9 has potential as an eco-friendly dental filling material. The present study completed the development of a formulation for a restoration material by combining water hyacinth fiber and shrimp skin chitosan. The outcomes of a comparative analysis of the mechanical properties of synthetic composite resins and water hyacinth fiber composites containing shrimp skin chitosan revealed that the F9 formulation (CA 5 % + C 7 %) exhibited the following fiber absorption, compressive strength, tensile strength, hardness, and thermal expansion.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Langue:
En
Journal:
Heliyon
Année:
2024
Type de document:
Article
Pays d'affiliation:
Indonésie
Pays de publication:
Royaume-Uni