Your browser doesn't support javascript.
loading
Block Copoly (Ester-Carbonate) Electrolytes for LiFePO4|Li Batteries with Stable Cycling Performance.
Su, Yongjin; Ma, Bingyi; Huang, Sheng; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong.
Affiliation
  • Su Y; School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China.
  • Ma B; School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China.
  • Huang S; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Xiao M; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Wang S; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
  • Han D; School of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou 510275, China.
  • Meng Y; The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Materials (Basel) ; 17(15)2024 Aug 03.
Article de En | MEDLINE | ID: mdl-39124519
ABSTRACT
To address the challenges posed by the narrow oxidation decomposition potential window and the characteristic of low ionic conductivity at room temperature of solid polymer electrolytes (SPEs), carbon dioxide (CO2), epichlorohydrin (PO), caprolactone (CL), and phthalic anhydride (PA) were employed in synthesizing di-block copolymer PCL-b-PPC and PCL-b-PPCP. The carbonate and ester bonds in PPC and PCL provide high electrochemical stability, while the polyether segments in PPC contribute to the high ion conductivity. To further improve the ion conductivity, we added succinonitrile as a plasticizer to the copolymer and used the copolymer to assemble lithium metal batteries (LMBs) with LiFePO4 as the cathode. The LiFePO4/SPE/Li battery assembled with PCL-b-PPC electrolyte exhibited an initial discharge-specific capacity of 155.5 mAh·g-1 at 0.5 C and 60 °C. After 270 cycles, the discharge-specific capacity was 140.8 mAh·g-1, with a capacity retention of 90.5% and an average coulombic efficiency of 99%, exhibiting excellent electrochemical performance. The study establishes the design strategies of di-block polymer electrolytes and provides a new strategy for the application of LMBs.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Materials (Basel) Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Materials (Basel) Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Suisse