Your browser doesn't support javascript.
loading
Dietary salt concentrations influence growth, nutrient utilization, and fatty acid profiles of turbot (Scophthalmus maximus) reared in brackish water.
Sevgili, Hüseyin; Kurtoglu, Adem; Oikawa, Masahiro; Pak, Faruk; Aktas, Özgür; Sivri, Firdevs Mert; Eroldogan, O Tufan.
Affiliation
  • Sevgili H; Fisheries Application and Research Center & Department of Aquaculture, Egirdir Fisheries Faculty, Isparta University of Applied Sciences, Eastern Campus, 32260, Isparta, Turkey. husevgili@yahoo.com.
  • Kurtoglu A; Mediterranean Fisheries Research Production and Training Institute, Beymelek Unit, Demre, Antalya, Turkey.
  • Oikawa M; Mediterranean Fisheries Research Production and Training Institute, Beymelek Unit, Demre, Antalya, Turkey.
  • Pak F; Mediterranean Fisheries Research Production and Training Institute, Beymelek Unit, Demre, Antalya, Turkey.
  • Aktas Ö; Mediterranean Fisheries Research Production and Training Institute, Beymelek Unit, Demre, Antalya, Turkey.
  • Sivri FM; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, 32200, Turkey.
  • Eroldogan OT; Department of Aquaculture, Faculty of Fisheries, Çukurova University, 01330, Balcali, Adana, Turkey.
Fish Physiol Biochem ; 2024 Aug 10.
Article de En | MEDLINE | ID: mdl-39126441
ABSTRACT
Expansion of economically viable turbot (Scophthalmus maximus) aquaculture depends on access to brackish-cold ground water sources in various parts of the world. Since brackish water sources can adversely affect the physiology and zoo technical performance of fish due to the burden of osmoregulation, dietary salt inclusion can alleviate the negative impacts of low-saline waters in several aquaculture species. This study investigated the effects of increasing dietary salt levels on the growth, feed utilization, body composition, and tissue fatty acid composition of juvenile turbot (initial live weight 120.3 ± 0.03 g/fish). Fish were fed five experimental diets supplemented with varying levels of sodium chloride (1.8-6.4%) or a control diet without salt. Each diet was tested in triplicate tanks for 9 weeks. Results showed that increasing dietary salt intake negatively impacted turbot performance, with significant reductions in weight gain, specific growth rate, and feed conversion ratio. Dry matter and ash content in the whole body and filet increased quadratically with increasing salt levels, whereas gill moisture and protein content decreased linearly. Furthermore, the nitrogen, lipid, and energy utilization efficiencies decreased with their respective intake and gain levels. Dietary salt significantly influenced the fatty acid profiles of gill, liver, and filet tissues. In the gill, monounsaturated fatty acids (161n-7, ΣMUFA) and n-6 PUFA (202n-6) increased, whereas EPA and DHA decreased. Liver ΣSFA (160, 180) increased, and n-3 PUFA (183n-3, 205n-3) decreased with increasing dietary salt. Filet saturated fatty acids (140, 150, 170) and n-6 PUFA (202n-6, 204n-6) increased, while n-3 PUFA (183n-3, EPA) decreased with dietary salt. DHA levels in filets showed a quadratic increase. Overall, this study shows that increasing dietary salt negatively impacts turbot growth, feed utilization, and tissue fatty acid composition in brackish water, highlighting the need for further studies on salinity management strategies for turbot aquaculture.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Fish Physiol Biochem Année: 2024 Type de document: Article Pays d'affiliation: Turquie Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Fish Physiol Biochem Année: 2024 Type de document: Article Pays d'affiliation: Turquie Pays de publication: Pays-Bas