Your browser doesn't support javascript.
loading
Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications.
McClements, David Julian.
Affiliation
  • McClements DJ; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA. Electronic address: mcclemen@umass.edu.
Adv Colloid Interface Sci ; 332: 103278, 2024 Oct.
Article de En | MEDLINE | ID: mdl-39153416
ABSTRACT
Biopolymer hydrogels have a broad range of applications as soft materials in a variety of commercial products, including foods, cosmetics, agrochemicals, personal care products, pharmaceuticals, and biomedical products. They consist of a network of entangled or crosslinked biopolymer molecules that traps relatively large quantities of water and provides semi-solid properties, like viscoelasticity or plasticity. Composite biopolymer hydrogels contain inclusions (fillers) to enhance their functional properties, including solid particles, liquid droplets, gas bubbles, nanofibers, or biological cells. These fillers vary in their composition, size, shape, rheology, and surface properties, which influences their impact on the rheological properties of the biopolymer hydrogels. In this article, the various types of biopolymers used to fabricate composite hydrogels are reviewed, with an emphasis on edible proteins and polysaccharides from sustainable sources, such as plants, algae, or microbial fermentation. The different kinds of gelling mechanism exhibited by these biopolymers are then discussed, including heat-, cold-, ion-, pH-, enzyme-, and pressure-set mechanisms. The different ways that biopolymer molecules can organize themselves in single and mixed biopolymer hydrogels are then highlighted, including polymeric, particulate, interpenetrating, phase-separated, and co-gelling systems. The impacts of incorporating fillers on the rheological properties of composite biopolymer hydrogels are then discussed, including mathematical models that have been developed to describe these effects. Finally, potential applications of composite biopolymer hydrogels are presented, including as delivery systems, packaging materials, artificial tissues, wound healing materials, meat analogs, filters, and adsorbents. The information provided in this article is intended to stimulate further research into the development and application of composite biopolymer hydrogels.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Hydrogels Langue: En Journal: Adv Colloid Interface Sci Sujet du journal: QUIMICA Année: 2024 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Hydrogels Langue: En Journal: Adv Colloid Interface Sci Sujet du journal: QUIMICA Année: 2024 Type de document: Article Pays de publication: Pays-Bas