Your browser doesn't support javascript.
loading
[Bacterial Blocking and Repair of Intestinal Defects With Well-Alighed Lamellar MXene/Polyvinyl Alcohol Hydrogels Prepared by Bidirectional Freezing Method]. / 双向冷冻法制备的取向多层MXene/PVA水凝胶的细菌屏蔽作用及对肠道缺损的修复.
Zhang, Shuting; Zhao, Xing; Yang, Wei.
Affiliation
  • Zhang S; ( 610065) College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
  • Zhao X; ( 610065) College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
  • Yang W; ( 610065) College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 838-844, 2024 Jul 20.
Article de Zh | MEDLINE | ID: mdl-39170025
ABSTRACT

Objective:

To explore the bacterial blocking effect of oriented multilayer MXene/polyvinyl alcohol (PVA) nanocomposite hydrogels and their effect on the repair of intestinal defects.

Methods:

MXene/PVA nanocomposite hydrogels were prepared using the traditional freezing method and the bidirectional freezing ice template method. The structures of the different hydrogels were observed using scanning electron microscopy (SEM) and micro-CT reconstruction. The rheological properties of the hydrogels were measured using a dynamic rheometer, and their mechanical properties were assessed using a universal testing machine. The burst pressure of the hydrogels was determined through burst experiments, and bacterial colony growth was observed by the osmosis method to assess the bacteria blocking ability of the hydrogels in vitro. A rat model of cecal perforation was established, and the hydrogels were used for intestinal repair. Gram staining was performed to observe in vivo the bacterial blocking ability of the hydrogels, HE staining was performed to observe the intestinal inflammation, and CD31 and CD68 immunofluorescence staining and proliferating cell nuclear antigen (PCNA) staining were performed to observe the repair effect of the hydrogels on intestinal defects.

Results:

SEM and micro-CT reconstruction revealed that the hydrogel prepared by the traditional freezing method exhibited a random porous structure, while the hydrogel prepared by the bidirectional freezing method showed an oriented multilayer structure. Rheological and tensile tests indicated that the oriented hydrogel had superior mechanical properties, and the burst pressure of the oriented multilayer hydrogel was as high as 27 kPa, significantly higher than that of the non-oriented hydrogel (P<0.001). Bacterial colony growth was observed by the osmosis method and it was found that, compared with the non-oriented hydrogel, the oriented multilayer hydrogel could effectively prevent the infiltration of Escherichia coli and Staphylococcus aureus in vitro. Gram staining results showed that the oriented multilayer hydrogel could effectively block intestinal bacteria from entering the abdominal cavity in vivo. HE staining results showed that the oriented multilayer hydrogel could effectively reduce intestinal inflammation in vivo. CD31 and CD68 immunofluorescence staining and PCNA staining results showed that the oriented multilayer hydrogel had a repairing effect on intestinal defects in vivo.

Conclusion:

The oriented multilayer hydrogel prepared by bidirectional freezing effectively prevents bacterial infiltration and reduces intestinal inflammation.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Poly(alcool vinylique) / Hydrogels Limites: Animals Langue: Zh Journal: Sichuan Da Xue Xue Bao Yi Xue Ban Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Poly(alcool vinylique) / Hydrogels Limites: Animals Langue: Zh Journal: Sichuan Da Xue Xue Bao Yi Xue Ban Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: Chine