Your browser doesn't support javascript.
loading
Engineering PTS-based glucose metabolism for efficient biosynthesis of bacterial cellulose by Komagataeibacter xylinus.
Peng, Zhaojun; Lv, Zilong; Liu, Jiaheng; Wang, Yan; Zhang, Tianzhen; Xie, Yanyan; Jia, Shiru; Xin, Bo; Zhong, Cheng.
Affiliation
  • Peng Z; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Lv Z; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Liu J; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Wang Y; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Zhang T; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Xie Y; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Jia S; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
  • Xin B; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address: xinb
  • Zhong C; State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.
Carbohydr Polym ; 343: 122459, 2024 Nov 01.
Article de En | MEDLINE | ID: mdl-39174096
ABSTRACT
Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; ΔgcdptsHIcrrE. coliptsGE. colipfkAE. coli). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTSGlc-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cellulose / Acetobacteraceae / Glucose Langue: En Journal: Carbohydr Polym Année: 2024 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cellulose / Acetobacteraceae / Glucose Langue: En Journal: Carbohydr Polym Année: 2024 Type de document: Article