Your browser doesn't support javascript.
loading
Human induced pluripotent stem cell based hepatic-modeling of lipid metabolism associated TM6SF2 E167K variant.
Faccioli, Lanuza Ap; Sun, Yiyue; Animasahun, Olamide; Motomura, Takashi; Liu, Zhenghao; Kurihara, Takeshi; Hu, Zhiping; Yang, Bo; Cetin, Zeliha; Baratta, Annalisa M; Shankaran, Ajay; Nenwani, Minal; Altay, Leyla Nurcihan; Huang, Linqi; Meurs, Noah; Franks, Jonathan; Stolz, Donna; Gavlock, Dillon C; Miedel, Mark T; Ostrowska, Alina; Florentino, Rodrigo M; Fox, Ira J; Nagrath, Deepak; Soto-Gutierrez, Alejandro.
Affiliation
  • Faccioli LA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Sun Y; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Animasahun O; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
  • Motomura T; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Liu Z; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Kurihara T; School of Medicine, Tsinghua University, Beijing, PRC.
  • Hu Z; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
  • Yang B; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
  • Cetin Z; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI.
  • Baratta AM; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Shankaran A; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Nenwani M; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Altay LN; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Huang L; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Meurs N; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Franks J; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Stolz D; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Gavlock DC; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Miedel MT; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ostrowska A; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Florentino RM; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
  • Fox IJ; Center for Transcriptional Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
  • Nagrath D; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
  • Soto-Gutierrez A; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
Hepatology ; 2024 Aug 27.
Article de En | MEDLINE | ID: mdl-39190693
ABSTRACT
BACKGROUND AND

AIMS:

TM6SF2 rs58542926 (E167K) is related to increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Conflicting mouse study results highlight the need for a human model to understand this mutation's impact. This study aims to create and characterize a reliable human in vitro model to mimic the effects of the TM6SF2-E167K mutation for future studies. APPROACH AND

RESULTS:

We used gene editing on human human-induced pluripotent stem cells (iPSC) from a healthy individual to create cells with the TM6SF2-E167K mutation. After hepatocyte directed differentiation, we observed decreased TM6SF2 protein expression, increased intracellular lipid droplets and total cholesterol in addition to reduced VLDL secretion. Transcriptomics revealed upregulation of genes involved in lipid, fatty acid, and cholesterol transport, flux, and oxidation. Global lipidomics showed increased lipid classes associated with ER stress, mitochondrial dysfunction, apoptosis, and lipid metabolism. Additionally, the TM6SF2-E167K mutation conferred a pro-inflammatory phenotype with signs of mitochondria and ER stress. Importantly, by facilitating protein folding within the ER of hepatocytes carrying TM6SF2-E167K mutation, VLDL secretion and ER stress markers improved.

CONCLUSIONS:

Our findings indicate that induced hepatocytes generated from iPSCs carrying the TM6SF2-E167K recapitulate the effects observed in human hepatocytes from individuals with the TM6SF2 mutation. This study characterizes an in vitro model that can be used as a platform to identify potential clinical targets and highlights the therapeutic potential of targeting protein misfolding to alleviate ER stress and mitigate the detrimental effects of the TM6SF2-E167K mutation on hepatic lipid metabolism.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Hepatology Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Hepatology Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique