Your browser doesn't support javascript.
loading
Efficient fabrication of cellulose polymer networks via alkaline swelling strategy for wood bonding.
Yin, Chunyan; Yu, Jiaojiao; Huang, Tenghua; Wang, Longsheng; Ni, Kelu; Yang, Long; Du, Guanben; Ran, Xin.
Affiliation
  • Yin C; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Yu J; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Huang T; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Wang L; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Ni K; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Yang L; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Du G; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
  • Ran X; Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, School of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwe
Int J Biol Macromol ; 277(Pt 3): 134368, 2024 Oct.
Article de En | MEDLINE | ID: mdl-39217033
ABSTRACT
Existing issues with bio-based adhesives, such as complex preparation processes, high energy consumption, and production costs, still need to be addressed. In our study, APTES was grafted onto microcrystalline cellulose (MCC) to generate active aminated cellulose, and then reacted with the epoxide group in glycerol triglycidyl ether (GTE) through a swelling strategy under alkaline solvent, forming a network structure via covalent cross-linking. The adhesive exhibits superior bonding performance and water-resistant property in the bonding strength test of poplar plywood, with a dry shear strength of 2.40 MPa, a wet shear strength of 2.16 MPa after soaking in 63 °C hot water, and a wet shear strength of 1.79 MPa after soaking in boiling water. In terms of cost calculation, the theoretical production cost of AC-GTE adhesive is calculated to be 5303.7 RMB per ton, which is comparable to that of phenol-formaldehyde (PF) resin and other petrochemical-based adhesives, and significantly lower than that of isocyanate-based adhesives. These research results can provide a practical example for producing high-efficiency, aldehyde-free, and low-cost bio-based adhesives.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bois / Cellulose / Adhésifs Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bois / Cellulose / Adhésifs Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article Pays de publication: Pays-Bas