Your browser doesn't support javascript.
loading
OsRopGEF10 Attenuates Cytokinin Signaling to Regulate Panicle Development and Grain Yield in Rice.
Li, Ming; Feng, Lianjie; Ye, Huanxia; Li, Meiyu; Jin, Jing; Tao, Li-Zhen; Liu, Huili.
Affiliation
  • Li M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
  • Feng L; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
  • Ye H; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
  • Li M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
  • Jin J; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
  • Tao LZ; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
  • Liu H; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
Rice (N Y) ; 17(1): 57, 2024 Sep 03.
Article de En | MEDLINE | ID: mdl-39223425
ABSTRACT
Cytokinins, which play crucial roles in shoot development, substantially affect grain yield. In rice, the OsRopGEF10-OsRAC3 module is associated with cytokinin signaling and crown root development. However, the effects of RopGEF-mediated cytokinin signaling on rice shoot development and grain yield remain unclear. In this study, we investigated the role of OsRopGEF10 in SAM development and the underlying mechanism. We showed that overexpression of OsRopGEF10 inhibited SAM and panicle development, leading to decreased grain yield. Intriguingly, the overexpression of a specific amino acid mutant of OsRopGEF10, designated gef10-W260S, was found to promote panicle development and grain yield. Further analysis using the BiFC assay revealed that the gef10-W260S mutation disrupted the recruitment of rice histidine phosphotransfer proteins (OsAHP1/2) to the plasma membrane (PM), thereby promoting cytokinin signaling. This effect was corroborated by a dark-induced leaf senescence assay, which revealed an increased cytokinin response in the gef10-W260S ectopic expression lines, whereas the overexpression lines presented a suppressed cytokinin response. Moreover, we revealed that the enhanced panicle development in the gef10-W260S lines was attributable to the upregulated expression of several type-B response regulators (RRs) that are crucial for panicle development. Collectively, these findings revealed the negative regulatory function of OsRopGEF10 in the development of the shoot apical meristem (SAM) via interference with cytokinin signaling. Our study highlights the promising role of OsRopGEF10 as a potential target for regulating SAM and panicle development in rice, revealing a valuable breeding strategy for increasing crop yield.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Rice (N Y) Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Rice (N Y) Année: 2024 Type de document: Article Pays d'affiliation: Chine Pays de publication: États-Unis d'Amérique