Your browser doesn't support javascript.
loading
Fast Non-contrast MR Angiography Using a Zigzag Centric ky - kz k-space Trajectory and Exponential Refocusing Flip Angles with Restoration of Longitudinal Magnetization.
Malis, Vadim; Vucevic, Diana; Bae, Won C; Yamamoto, Asako; Kassai, Yoshimori; Lane, John; Hsiao, Albert; Nakamura, Katsumi; Miyazaki, Mitsue.
Affiliation
  • Malis V; Department of Radiology, University of California San Diego, San Diego, CA, USA.
  • Vucevic D; Department of Radiology, University of California San Diego, San Diego, CA, USA.
  • Bae WC; Department of Radiology, University of California San Diego, San Diego, CA, USA.
  • Yamamoto A; Department of Radiology, VA San Diego Healthcare System, San Diego, CA, USA.
  • Kassai Y; Department of Radiology, Teikyo University, Tokyo, Japan.
  • Lane J; Canon Medical Systems Corp, Ohtawara, Tochigi, Japan.
  • Hsiao A; Department of Vascular Surgery, University of California San Diego, San Diego, CA, USA.
  • Nakamura K; Department of Radiology, University of California San Diego, San Diego, CA, USA.
  • Miyazaki M; Tobata Kyoritsu Hospital, Kitakyushu, Fukuoka, Japan.
Magn Reson Med Sci ; 2024 Sep 05.
Article de En | MEDLINE | ID: mdl-39231732
ABSTRACT

PURPOSE:

Fresh blood imaging (FBI) utilizes physiological blood signal differences between diastole and systole, causing a long acquisition time. The purpose of this study is to develop a fast FBI technique using a centric ky - kz k-space trajectory (cFBI) and an exponential refocusing flip angle (eFA) scheme with fast longitudinal restoration.

METHODS:

This study was performed on 8 healthy subjects and 2 patients (peripheral artery disease and vascular disease) with informed consent, using a clinical 3-Tesla MRI scanner. A numeric simulation using extended phase graph (EPG) and phantom studies of eFA were carried out to investigate the restoration of longitudinal signal by lowering refocusing flip angles in later echoes. cFBI was then acquired on healthy subjects at the popliteal artery station to assess the effect of varying high/low flip ratios on the longitudinal restoration effects. In addition, trigger-delays of cFBI were optimized owing to the long acquisition window in zigzag centric ky - kz k-space trajectory. After optimizations, cFBI images were compared against standard FBI (sFBI) images in terms of scan time, motion artifacts, Nyquist N/2 artifacts, blurring, and overall image quality. We also performed two-way repeated measures analysis of variance.

RESULTS:

cFBI with eFA achieved nearly a 50% scan time reduction compared to sFBI. The high/low flip angle of 180/2 degrees with lower refocusing pulses shows fast longitudinal restoration with the highest blood signals, yet also more sensitive to the background signals. Overall, 180/30 degrees images show reasonable blood signal recovery while minimizing the background signal artifacts. After the trigger delay optimization, maximum intensity projection image of cFBI after systole-diastole subtraction demonstrates less motion and N/2 artifacts than that of sFBI.

CONCLUSION:

Together with eFA for fast longitudinal signal restoration, the proposed cFBI technique achieved a 2-fold reduction in scan time and improved image quality without major artifacts.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Magn Reson Med Sci / Magn. reson. med. sci. (Online) / Magnetic resonance in medical sciences (Online) Sujet du journal: DIAGNOSTICO POR IMAGEM Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: Japon

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Magn Reson Med Sci / Magn. reson. med. sci. (Online) / Magnetic resonance in medical sciences (Online) Sujet du journal: DIAGNOSTICO POR IMAGEM Année: 2024 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: Japon