Your browser doesn't support javascript.
loading
ParalichenysinDY4, a novel bacteriocin-like substance, is employed to control Clostridium perfringens.
Wang, Haiyan; Wang, Linkang; Zhang, Fenqiang; Li, XinXin; Wang, Shuang; Gao, Dongyang; Li, Xiangmin; Qian, Ping.
Affiliation
  • Wang H; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Wang L; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Zhang F; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Li X; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Wang S; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Gao D; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Li X; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
  • Qian P; National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; Key Laboratory of Preventive Veteri
Int J Biol Macromol ; 279(Pt 4): 135412, 2024 Nov.
Article de En | MEDLINE | ID: mdl-39245094
ABSTRACT
Clostridium perfringens (C. perfringens) is an important pathogen that contributes to human and animal disease. At present, antibiotic therapy is one of the most effective strategies for C. perfringens. However, with the rise of antibacterial resistance, new agents with novel mechanisms of action are urgently needed. Bacteriocins are recognized as a viable alternative to antibiotics. In this study, the bacteriocin-like substance ParalichenysinDY4, derived from the Bacillus paralicheniformis (B. paralicheniformis) DY4 strain, is investigated as a potential alternative for combating Clostridium perfringens. The substance was isolated from B. paralicheniformis DY4 fermentation broth through a series of purification steps including methanol extraction, gel filtration, and high-performance liquid chromatography. Mass spectrometry analysis of ParalichenysinDY4 revealed that the detected peptide sequences did not match any previously known bacteriocins, indicating it is a novel bacteriocin-like substance. The novel bacteriocin-like substance exhibits effective antibacterial activity and broad antimicrobial spectrum against C. perfringens. Subsequent analyses utilizing methodologies including flow cytometry and scanning electron microscopy suggest that its mechanism of action is linked to its effects on the cell membrane. At the same time, due to its exceptional stability, safety, and efficient ability to remove pathogens both in vitro and in vivo, ParalichenysinDY4 holds promise as a valuable natural antimicrobial agent.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bactériocines / Clostridium perfringens / Antibactériens Langue: En Journal: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Année: 2024 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bactériocines / Clostridium perfringens / Antibactériens Langue: En Journal: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Année: 2024 Type de document: Article Pays de publication: Pays-Bas