Your browser doesn't support javascript.
loading
Antifouling activity and ecotoxicological profile of the cyanobacterial oxadiazine nocuolin A.
Pereira, Sandra; Oliveira, Isabel B; Sousa, Maria Lígia; Gonçalves, Catarina; Preto, Marco; Turkina, Maria V; Vasconcelos, Vitor; Campos, Alexandre; Almeida, Joana R.
Affiliation
  • Pereira S; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Po
  • Oliveira IB; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. Electronic address: isabel_s_oliveira@yahoo.com.
  • Sousa ML; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. Electronic address: ligiasilvasousa@gmail.com.
  • Gonçalves C; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Po
  • Preto M; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. Electronic address: mcpreto@gmail.com.
  • Turkina MV; Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden. Electronic address: maria.turkina@liu.se.
  • Vasconcelos V; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Po
  • Campos A; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. Electronic address: amoclclix@gmail.com.
  • Almeida JR; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal. Electronic address: jalmeida@ciimar.up.pt.
Chemosphere ; 365: 143318, 2024 Oct.
Article de En | MEDLINE | ID: mdl-39271082
ABSTRACT
Pursuing effective and biocompatible natural compounds to supplant current biocidal antifouling (AF) technologies remains crucial and challenging. Among natural products hosts, cyanobacteria are recognized as producers of bioactive secondary metabolites that are underexplored in terms of anti-biofilm and AF potential. Nocuolin A, a natural oxadiazine previously isolated and known to be produced by different cyanobacterial strains, has demonstrated bioactive potential, particularly against tumor cell lines. Considering this potential and its exquisite chemical structure, here nocuolin A was investigated as a potential natural AF agent through an integrative approach including AF bioactivity testing across distinct levels of biological organization, mode of action assessment, ecotoxicity evaluation, and ecological risk predictions. Nocuolin A was found to inhibit the settlement of mussel (Mytilus galloprovincialis) plantigrades (EC50 = 3.905 µM) while showing no toxicity to this biofouling species (LC50 > 100 µM). Additionally, while exhibiting no inhibitory activity against the growth of five marine biofilm-forming bacterial strains, it significantly suppressed the growth of the marine biofilm-forming diatom Navicula sp. (EC50 = 1.561 µM), and had a lethal effect on this diatom species (>3.1 µM). The AF targets of nocuolin A on mussel plantigrades revealed no correlation with acetylcholinesterase and tyrosinase metabolic processes; however, proteins involved in oxidative stress, muscle regulation, and energy production were highlighted. The results also provide insights into the ecological risk of nocuolin A, including its ecotoxicity against Artemia salina nauplii (LC50 = 2.480 µM), Amphibalanus amphitrite nauplii (LC50 = 0.0162 µM), and Danio rerio embryos (LC50 = 0.0584 µM). When matching these results with simulated environmental values, nocuolin A was deemed a considerable threat to the ecosystems. While this research highlights the AF activity of nocuolin A, it also emphasizes the potential adverse environmental impact when applied in preventive coatings.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cyanobactéries / Biofilms / Encrassement biologique Limites: Animals Langue: En Journal: Chemosphere Année: 2024 Type de document: Article Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Cyanobactéries / Biofilms / Encrassement biologique Limites: Animals Langue: En Journal: Chemosphere Année: 2024 Type de document: Article Pays de publication: Royaume-Uni