Your browser doesn't support javascript.
loading
Novel algae-chitosan/alginate beads for efficient basic Fuchsin removal: Synthesis, characterization, adsorption study, mechanism, and optimization.
Almutairi, Fahad M.
Affiliation
  • Almutairi FM; Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia. Electronic address: falrabae@ut.edu.sa.
Int J Biol Macromol ; 280(Pt 1): 135604, 2024 Sep 12.
Article de En | MEDLINE | ID: mdl-39276900
ABSTRACT
In this study, utilized algae activated with citric acid and lime juice to develop a novel bioadsorbent, The Algae@CS/Alginate beads were formed by encapsulating the activated algae with chitosan and alginate, producing a nanocomposite that is efficient in removing Basic Fuchsin (BF) dye from water. The beads were characterized by means of a diversity of techniques, such as FTIR, XRD, XPS, SEM and determination the surface area via N2 adsorption/desorption isotherm that permitted that the adsorbent has high surface area 124.43 m2/g. The electrical properties of the BF, including its structure and reactivity, were determined by density functional theory (DFT). The MEP data and the molecular orbitals (HOMO and LUMO), as well as the sites of the electrophilic besides nucleophilic attack places, correspond fairly well, according to DFT. The adsorption process was fitted to Langmuir isothermally, and kinetically to pseudo-second-order (PSOE) model. The adsorption mechanism was identified as chemisorption with an adsorption energy of 32.6 kJ/mol. Thermodynamic research shows that the BF adsorption process by Algae@CS/Alginate beads is spontaneous and endothermic because of the positive ΔHo and negative ΔGo. Through numerical optimization of the programmed, the ideal conditions for adsorption were strongminded to be a pH of 8, a dosage of 0.02 g/25 mL for Algae@CS/Alginate beads, and a concentration of 367.27 mg/g of BF. Using the least amount of intended experiments, the adsorption procedure was optimized by the request of Box-Behnken design (BBD) and answer surface methodology (RSM) in Design-Expert software. Adsorbent reusability test results showed that, following eight successive cycles of adsorption and desorption, the adsorbent was stable and that removal efficacy had not decreased. It additionally demonstrated good efficacy, no alteration in chemical conformation, and the same XRD and FTIR data before and after recycle. Analyze the interaction between the Algae@CS/Alginate beads and the BF.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Int J Biol Macromol Année: 2024 Type de document: Article Pays de publication: Pays-Bas