Your browser doesn't support javascript.
loading
Enhanced herbicide metabolism induced by 2,4-D in herbicide susceptible Lolium rigidum provides protection against diclofop-methyl.
Han, Heping; Yu, Qin; Cawthray, Gregory R; Powles, Stephen B.
Affiliation
  • Han H; Australian Herbicide Resistance Initiative, School of Plant Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, WA 6009, Australia.
Pest Manag Sci ; 69(9): 996-1000, 2013 Sep.
Article in En | MEDLINE | ID: mdl-23785039
ABSTRACT

BACKGROUND:

The auxinic herbicide 2,4-D amine is known, in vitro, as a cytochrome P450 inducer. The current study uses 2,4-D pre-treatment, at the whole plant level, to study mechanism(s) of non-target site based herbicide resistance to the ACCase-inhibiting herbicide diclofop-methyl in Lolium rigidum.

RESULTS:

The 2,4-D pre-treatment caused up to 10-fold shift in LD50 and GR50 in dose-response to subsequently applied diclofop-methyl in a herbicide susceptible L. rigidum population. Foliar uptake and translocation of (14) C-diclofop-methyl did not differ in 2,4-D pre-treated versus untreated plants. HPLC analysis revealed that de-esterification of diclofop-methyl to toxic diclofop acid was similar, but further metabolism of diclofop acid to non-toxic metabolites was significantly (1.8-fold) faster in 2,4-D pre-treated than untreated plants. HPLC profile of major polar metabolites was similar when L. rigidum and diclofop-methyl tolerant wheat were compared, but wheat metabolised diclofop acid three-fold faster than L. rigidum. In addition, 2,4-D pre-treatment also induced cross-protection against the ALS-inhibiting herbicide chlorsulfuron, and the known P450 inhibitor malathion can reverse this effect.

CONCLUSIONS:

Protection against diclofop-methyl provided by 2,4-D pre-treatment in susceptible L. rigidum is associated with higher rates of herbicide metabolism, mirroring that identified in field-evolved, non-target site-based diclofop-methyl resistant populations. 2,4-D may induce higher level expression of herbicide-metabolising genes hence providing protection, and therefore, this 2,4-D induction system can be used, in combination with other genomic approaches, to assist isolating cytochrome P450 and other genes that are involved in herbicide metabolism and endow herbicide resistance in L. rigidum.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lolium / 2,4-Dichlorophenoxyacetic Acid / Herbicide Resistance / Halogenated Diphenyl Ethers / Herbicides Language: En Journal: Pest Manag Sci Journal subject: TOXICOLOGIA Year: 2013 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lolium / 2,4-Dichlorophenoxyacetic Acid / Herbicide Resistance / Halogenated Diphenyl Ethers / Herbicides Language: En Journal: Pest Manag Sci Journal subject: TOXICOLOGIA Year: 2013 Document type: Article Affiliation country: