Your browser doesn't support javascript.
loading
Effect of Cd2+ on muscle type of creatine kinase: Inhibition kinetics integrating computational simulations.
Cai, Yan; Lee, Jinhyuk; Wang, Wei; Yang, Jun-Mo; Qian, Guo-Ying.
Affiliation
  • Cai Y; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
  • Lee J; Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea; Department of Nanobiotechnology and Bioinformatics, University of Sciences and Technology, Daejeon, 305-350, Republic of Korea.
  • Wang W; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China.
  • Yang JM; Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, 135-710, Republic of Korea. Electronic address: junmo.yang@samsung.com.
  • Qian GY; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, PR China. Electronic address: qianguoying_wanli@hotmail.com.
Int J Biol Macromol ; 83: 233-41, 2016 Feb.
Article in En | MEDLINE | ID: mdl-26642840
ABSTRACT
Creatine kinase (EC 2.7.3.2, CK) plays an important role in cellular energy metabolism and homeostasis by catalyzing the transfer of phosphate between ATP and creatine phosphate. We investigated the effects of Cd2+ on muscle type of creatine kinase from Pelodiscus sinensis (PSCKM). Cd2+ conspicuously inactivated the activity of PSCKM (IC50=0.062 mM) in a first-order kinetic process and exhibited non-competitive inhibition with creatine and ATP. A conformational study showed that Cd2+ induced tertiary structure changes in PSCKM with exposure of hydrophobic surfaces. The addition of osmolytes, such as glycine and proline, partially reactivated the Cd2+-mediated inactive PSCKM. Additionally, molecular dynamics and docking simulations between PSCKM and Cd2+ were conducted to show that Cd2+ blocked the entrance of ATP to the active site, and this result is consistent with the experimental results showing Cd2+-induced inactivation of PSCKM. Our study demonstrates the effect of Cd2+ on PSCKM enzymatic function and unfolding, including the protective effects of osmolytes on PSCKM inactivation. This study provides important insights into the changes in the PSCKM metabolic enzyme of ectothermic animals in response to the environment.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cadmium / Creatine Kinase / Enzyme Inhibitors / Molecular Dynamics Simulation / Muscles Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2016 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cadmium / Creatine Kinase / Enzyme Inhibitors / Molecular Dynamics Simulation / Muscles Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2016 Document type: Article