Your browser doesn't support javascript.
loading
Discovery of Organophosphate Resistance-Related Genes Associated With Well-known Resistance Mechanisms of Plutella xylostella (L.) (Lepidoptera: Plutellidae) by RNA-Seq.
J Econ Entomol ; 109(3): 1378-1386, 2016 Apr 22.
Article in En | MEDLINE | ID: mdl-27106222
Pesticide resistance poses many challenges for pest control, particularly for destructive pests such as diamondback moths ( Plutella xylostella ). Organophosphates have been used in the field since the 1950s, leading to selection for resistance-related gene variants and the development of resistance to new insecticides in the diamondback moth. Identifying actual and potential genes involved in resistance could offer solutions for control. This study established resistant diamondback moth strains from two different collections using mevinphos. Two sets of transcriptome sequencing (RNA-Seq) data were generated for pairs of mevinphos-resistant versus susceptible (wild-type) strains. One susceptible strain containing 14 giga base pairs was assembled into a reference-based assembly using published scaffold sequences as reference. Differential expression data between resistant and susceptible strains revealed 944 transcripts (803 with annotations) showing upregulation and 427 transcripts (150 with annotations) showing downregulation. Around 6.8% of the differential expression transcripts (65) could be categorized as associated with well-known resistance mechanisms such as penetration, detoxification, and behavior response; of these 65 transcripts, 38 showed upregulation, and 12 relating to penetration were upregulated when the transcripts of 19 cytochrome P450s, 2 zeta-class glutathione S-transferases, and 4 ATP-binding cassette transporters showed upregulation. In addition, 11 groups of transcripts related to olfactory perception appeared to be downregulated in trade-off situations. Quantitative polymerase chain reaction expression results were consistent with RNA-Seq data. Possible roles of these differentially expressed genes in resistance mechanisms are discussed in this study.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: J Econ Entomol Year: 2016 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: J Econ Entomol Year: 2016 Document type: Article Country of publication: