Your browser doesn't support javascript.
loading
Ground state selection under pressure in the quantum pyrochlore magnet Yb2Ti2O7.
Kermarrec, E; Gaudet, J; Fritsch, K; Khasanov, R; Guguchia, Z; Ritter, C; Ross, K A; Dabkowska, H A; Gaulin, B D.
Affiliation
  • Kermarrec E; Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay Cedex 91405, France.
  • Gaudet J; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1.
  • Fritsch K; Laboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble BP 166-38042, France.
  • Khasanov R; Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1.
  • Guguchia Z; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
  • Ritter C; Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland.
  • Ross KA; Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, Villigen PSI CH-5232, Switzerland.
  • Dabkowska HA; Institut Laue Langevin, BP 156, Grenoble 38042, France.
  • Gaulin BD; Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875, USA.
Nat Commun ; 8: 14810, 2017 03 15.
Article in En | MEDLINE | ID: mdl-28294118
A quantum spin liquid is a state of matter characterized by quantum entanglement and the absence of any broken symmetry. In condensed matter, the frustrated rare-earth pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7, so-called spin ices, exhibit a classical spin liquid state with fractionalized thermal excitations (magnetic monopoles). Evidence for a quantum spin ice, in which the magnetic monopoles become long range entangled and an emergent quantum electrodynamics arises, seems within reach. The magnetic properties of the quantum spin ice candidate Yb2Ti2O7 have eluded a global understanding and even the presence or absence of static magnetic order at low temperatures is controversial. Here we show that sensitivity to pressure is the missing key to the low temperature behaviour of Yb2Ti2O7. By combining neutron diffraction and muon spin relaxation on a stoichiometric sample under pressure, we evidence a magnetic transition from a disordered, non-magnetic, ground state to a splayed ferromagnetic ground state.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2017 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2017 Document type: Article Affiliation country: Country of publication: