Your browser doesn't support javascript.
loading
Dynamical Defects in Rotating Magnetic Skyrmion Lattices.
Pöllath, S; Wild, J; Heinen, L; Meier, T N G; Kronseder, M; Tutsch, L; Bauer, A; Berger, H; Pfleiderer, C; Zweck, J; Rosch, A; Back, C H.
Affiliation
  • Pöllath S; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Wild J; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Heinen L; Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany.
  • Meier TNG; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Kronseder M; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Tutsch L; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Bauer A; Physik-Department, Technische Universität München, D-85748 Garching, Germany.
  • Berger H; Crystal Growth Facility, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
  • Pfleiderer C; Physik-Department, Technische Universität München, D-85748 Garching, Germany.
  • Zweck J; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
  • Rosch A; Institut für Theoretische Physik, Universität zu Köln, D-50937 Köln, Germany.
  • Back CH; Institut für Experimentelle Physik, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany.
Phys Rev Lett ; 118(20): 207205, 2017 May 19.
Article in En | MEDLINE | ID: mdl-28581772
ABSTRACT
The chiral magnet Cu_{2}OSeO_{3} hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, raising the question of which of these scenarios better describes the violent dynamics at the domain boundaries. Here, we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz transmission electron microscope different parts of the Skyrmion lattice can be set into motion with different angular velocities. Tracking the time dependence, we show that the constant rearrangement of domain walls is governed by dynamic 5-7 defects arranging into lines. An analysis of the associated defect density is described by Frank's equation and agrees well with classical 2D Monte Carlo simulations. Fluctuations of boundaries show a surgelike rearrangement of Skyrmion clusters driven by defect rearrangement consistent with simulations treating Skyrmions as point particles. Our findings underline the particle character of the Skyrmion.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2017 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2017 Document type: Article Affiliation country:
...