Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models.
Phys Rev Lett
; 120(7): 075001, 2018 Feb 16.
Article
in En
| MEDLINE
| ID: mdl-29542943
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Phys Rev Lett
Year:
2018
Document type:
Article
Affiliation country:
Country of publication: