Your browser doesn't support javascript.
loading
Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients.
Larson, Peder E Z; Chen, Hsin-Yu; Gordon, Jeremy W; Korn, Natalie; Maidens, John; Arcak, Murat; Tang, Shuyu; Criekinge, Mark; Carvajal, Lucas; Mammoli, Daniele; Bok, Robert; Aggarwal, Rahul; Ferrone, Marcus; Slater, James B; Nelson, Sarah J; Kurhanewicz, John; Vigneron, Daniel B.
Affiliation
  • Larson PEZ; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Chen HY; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California.
  • Gordon JW; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Korn N; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California.
  • Maidens J; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Arcak M; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Tang S; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California.
  • Criekinge M; Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California.
  • Carvajal L; Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California.
  • Mammoli D; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Bok R; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California.
  • Aggarwal R; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Ferrone M; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Slater JB; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Nelson SJ; Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California.
  • Kurhanewicz J; Department of Medicine, University of California - San Francisco, San Francisco, California.
  • Vigneron DB; Department of Clinical Pharmacy, University of California - San Francisco, San Francisco, California.
NMR Biomed ; 31(11): e3997, 2018 11.
Article in En | MEDLINE | ID: mdl-30230646
ABSTRACT
MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Carbon Isotopes / Magnetic Resonance Imaging / Pyruvic Acid Type of study: Prognostic_studies Limits: Humans / Male / Middle aged Language: En Journal: NMR Biomed Journal subject: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Carbon Isotopes / Magnetic Resonance Imaging / Pyruvic Acid Type of study: Prognostic_studies Limits: Humans / Male / Middle aged Language: En Journal: NMR Biomed Journal subject: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Year: 2018 Document type: Article