Your browser doesn't support javascript.
loading
Reaction of ribulose biphosphate carboxylase/oxygenase assembled on a DNA scaffold.
Dinh, Huyen; Nakata, Eiji; Lin, Peng; Saimura, Masayuki; Ashida, Hiroki; Morii, Takashi.
Affiliation
  • Dinh H; Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
  • Nakata E; Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
  • Lin P; Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
  • Saimura M; Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
  • Ashida H; Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan.
  • Morii T; Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan. Electronic address: t-morii@iae.kyoto-u.ac.jp.
Bioorg Med Chem ; 27(22): 115120, 2019 11 15.
Article in En | MEDLINE | ID: mdl-31627975
Ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO), an enzyme in the Calvin-Benson-Bassham cycle of photosynthesis, catalyzes the first step of CO2 fixation in plants, algae, and photosynthetic bacteria. Despite of the important function in the global carbon cycle, RuBisCO suffers from a slow reaction rate and a competing reaction with O2 which draw attentions to improve the enzyme efficiency. In this study, a RuBisCO dimer from Rhodospirillum rubrum was assembled on a DNA scaffold using a dimeric DNA binding protein as an adaptor. The enzyme assembly was characterized by atomic force microscopy and RuBisCO assembled on the DNA scaffold showed avid enzymatic activity with retaining its parent carboxylase function. To mimic the environment of the natural microcompartment in cyanobacterial carboxysome that encapsulate the second enzyme carbonic anhydrase (CA) with RuBisCO, RuBisCO was next co-assembled with CA on the DNA scaffold. Although the natural carboxysome assembly is believed to enhance the RuBisCO activity, the co-assembly of RuBisCO and CA reduced the RuBisCO activity, suggesting that the preferential CO2 dehydration by CA reduced the RuBisCO reaction rate. In line with the recent study, our results suggest that the proximity in the interenzyme distance of RuBisCO and CA is not the crucial determinant for the enhanced RuBisCO activity in carboxysome. The assembly of RuBisCO and CA on DNA scaffold provides a platform for further study on the spatial control of RuBisCO and associating enzymes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribulose-Bisphosphate Carboxylase / DNA-Binding Proteins Limits: Humans Language: En Journal: Bioorg Med Chem Journal subject: BIOQUIMICA / QUIMICA Year: 2019 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribulose-Bisphosphate Carboxylase / DNA-Binding Proteins Limits: Humans Language: En Journal: Bioorg Med Chem Journal subject: BIOQUIMICA / QUIMICA Year: 2019 Document type: Article Affiliation country: Country of publication: