Your browser doesn't support javascript.
loading
NOD2 regulates microglial inflammation through the TAK1-NF-κB pathway and autophagy activation in murine pneumococcal meningitis.
Wang, Guan; Fu, Yanan; Ma, Kun; Liu, Junli; Liu, Xinjie.
Affiliation
  • Wang G; Department of Pediatrics, Qilu Hospital, Shandong University, 107#, Wen Hua Xi Road, Jinan, Shandong, 250012, PR China.
  • Fu Y; Qilu Hospital, Shandong University, 107#, Wen Hua Xi Road, Jinan, Shandong, 250012, PR China.
  • Ma K; Department of Pediatrics, Shandong Provincial Qianfoshan Hospital, The Frist Hospital Affiliated with Shandong First Medical University, 16766#, Jing Shi Road, Jinan, Shandong, 250014, PR China.
  • Liu J; Department of Pediatrics, Taian Central Hospital, 29#, Long Tan Road, Taian, Shandong, 271000, PR China.
  • Liu X; Department of Pediatrics, Qilu Hospital, Shandong University, 107#, Wen Hua Xi Road, Jinan, Shandong, 250012, PR China. Electronic address: liuxinjie@sdu.edu.cn.
Brain Res Bull ; 158: 20-30, 2020 05.
Article in En | MEDLINE | ID: mdl-32109527
ABSTRACT
Streptococcus pneumoniae is responsible for pneumococcal meningitis, with significant mortality and morbidity worldwide. Microglial inflammation plays a vital role in meningitis. The peptidoglycan sensor NOD2 (nucleotide-binding oligomerization domain 2) has been identified to promote microglia activation, but the role in autophagy following pneumococcal meningitis remains unclear. In the present study, we investigated the role of NOD2 in microglial inflammation and autophagy, as well as related signaling pathways, during S. pneumonia infection. NOD2 expression was knocked down by the injection of lentivirus-mediated short-hairpin RNA (shRNA). Our results revealed that NOD2 promotes microglial inflammation by increasing inflammatory mediators. We also showed that the TAK1-NF-κB pathway is involved in this process. In addition, NOD2 increased the expression of autophagy-related proteins and induced autophagosome formation. Rapamycin and 3-MA were utilized to assess the role of autophagy in microglial inflammation induced by S. pneumonia. We demonstrated that autophagy serves as a cellular defense mechanism to reduce inflammatory mediators. Similar to the in vitro results, NOD2 induced inflammation and autophagy in the brain in a mouse meningitis model. Moreover, NOD2 silencing significantly reduced brain edema and improved the neurological function of pneumococcal meningitis mice. Taken together, these data demonstrate that NOD2 promotes microglial inflammation and autophagy in murine pneumococcal meningitis, and the TAK1-NF-κB pathway is involved in microglial activation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autophagy / NF-kappa B / Microglia / MAP Kinase Kinase Kinases / Nod2 Signaling Adaptor Protein / Meningitis, Pneumococcal Type of study: Prognostic_studies Limits: Animals Language: En Journal: Brain Res Bull Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autophagy / NF-kappa B / Microglia / MAP Kinase Kinase Kinases / Nod2 Signaling Adaptor Protein / Meningitis, Pneumococcal Type of study: Prognostic_studies Limits: Animals Language: En Journal: Brain Res Bull Year: 2020 Document type: Article