Your browser doesn't support javascript.
loading
Protein Engineering of a Pyridoxal-5'-Phosphate-Dependent l-Aspartate-α-Decarboxylase from Tribolium castaneum for ß-Alanine Production.
Yu, Xin-Jun; Huang, Chang-Yi; Xu, Xiao-Dan; Chen, Hong; Liang, Miao-Jie; Xu, Zhe-Xian; Xu, Hui-Xia; Wang, Zhao.
Affiliation
  • Yu XJ; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Huang CY; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Xu XD; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Chen H; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Liang MJ; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Xu ZX; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Xu HX; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
  • Wang Z; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou 310014, China.
Molecules ; 25(6)2020 Mar 12.
Article in En | MEDLINE | ID: mdl-32178239
ABSTRACT
In the present study, a pyridoxal-5'-phosphate (PLP)-dependent L-aspartate-α-decarboxylase from Tribolium castaneum (TcPanD) was selected for protein engineering to efficiently produce ß-alanine. A mutant TcPanD-R98H/K305S with a 2.45-fold higher activity than the wide type was selected through error-prone PCR, site-saturation mutagenesis, and 96-well plate screening technologies. The characterization of purified enzyme TcPanD-R98H/K305S showed that the optimal cofactor PLP concentration, temperature, and pH were 0.04% (m/v), 50 °C, and 7.0, respectively. The 1mM of Na+, Ni2+, Co2+, K+, and Ca2+ stimulated the activity of TcPanD-R98H/K305S, while only 5 mM of Ni2+ and Na+ could increase its activity. The kinetic analysis indicated that TcPanD-R98H/K305S had a higher substrate affinity and enzymatic reaction rate than the wild enzyme. A total of 267 g/L substrate l-aspartic acid was consumed and 170.5 g/L of ß-alanine with a molar conversion of 95.5% was obtained under the optimal condition and 5-L reactor fermentation.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyridoxal Phosphate / Protein Engineering / Beta-Alanine / Glutamate Decarboxylase Limits: Animals Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyridoxal Phosphate / Protein Engineering / Beta-Alanine / Glutamate Decarboxylase Limits: Animals Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2020 Document type: Article Affiliation country:
...