YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition.
Gut
; 70(1): 55-66, 2021 01.
Article
in En
| MEDLINE
| ID: mdl-32345613
OBJECTIVE: Peritoneal carcinomatosis (PC; malignant ascites or implants) occurs in approximately 45% of advanced gastric adenocarcinoma (GAC) patients and associated with a poor survival. The molecular events leading to PC are unknown. The yes-associated protein 1 (YAP1) oncogene has emerged in many tumour types, but its clinical significance in PC is unclear. Here, we investigated the role of YAP1 in PC and its potential as a therapeutic target. METHODS: Patient-derived PC cells, patient-derived xenograft (PDX) and patient-derived orthotopic (PDO) models were used to study the function of YAP1 in vitro and in vivo. Immunofluorescence and immunohistochemical staining, RNA sequencing (RNA-Seq) and single-cell RNA-Seq (sc-RNA-Seq) were used to elucidate the expression of YAP1 and PC cell heterogeneity. LentiCRISPR/Cas9 knockout of YAP1 and a YAP1 inhibitor were used to dissect its role in PC metastases. RESULTS: YAP1 was highly upregulated in PC tumour cells, conferred cancer stem cell (CSC) properties and appeared to be a metastatic driver. Dual staining of YAP1/EpCAM and sc-RNA-Seq revealed that PC tumour cells were highly heterogeneous, YAP1high PC cells had CSC-like properties and easily formed PDX/PDO tumours but also formed PC in mice, while genetic knockout YAP1 significantly slowed tumour growth and eliminated PC in PDO model. Additionally, pharmacologic inhibition of YAP1 specifically reduced CSC-like properties and suppressed tumour growth in YAP1high PC cells especially in combination with cytotoxics in vivo PDX model. CONCLUSIONS: YAP1 is essential for PC that is attenuated by YAP1 inhibition. Our data provide a strong rationale to target YAP1 in clinic for GAC patients with PC.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Peritoneal Neoplasms
/
Stomach Neoplasms
/
Adenocarcinoma
/
Adaptor Proteins, Signal Transducing
Limits:
Animals
/
Humans
Language:
En
Journal:
Gut
Year:
2021
Document type:
Article
Country of publication: