Your browser doesn't support javascript.
loading
Studies of selenium and arsenic mutual protection in human HepG2 cells.
Kaur, Gurnit; Ponomarenko, Olena; Zhou, Janet R; Swanlund, Diane P; Summers, Kelly L; Dolgova, Natalia V; Antipova, Olga; Pickering, Ingrid J; George, Graham N; Leslie, Elaine M.
Affiliation
  • Kaur G; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
  • Ponomarenko O; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Zhou JR; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
  • Swanlund DP; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
  • Summers KL; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Dolgova NV; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Antipova O; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA.
  • Pickering IJ; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • George GN; Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • Leslie EM; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton
Chem Biol Interact ; 327: 109162, 2020 Aug 25.
Article in En | MEDLINE | ID: mdl-32524993
ABSTRACT
Hundreds of millions of people worldwide are exposed to unacceptable levels of carcinogenic inorganic arsenic. Animal models have shown that selenium and arsenic are mutually protective through the formation and elimination of the seleno-bis(S-glutathionyl) arsinium ion [(GS)2AsSe]-. Consistent with this, human selenium deficiency in arsenic-endemic regions is associated with arsenic-induced disease, leading to the initiation of human selenium supplementation trials. In contrast to the protective effect observed in vivo, in vitro studies have suggested that selenite increases arsenite cellular retention and toxicity. This difference might be explained by the rapid conversion of selenite to selenide in vivo. In the current study, selenite did not protect the human hepatoma (HepG2) cell line against the toxicity of arsenite at equimolar concentrations, however selenide increased the IC50 by 2.3-fold. Cytotoxicity assays of arsenite + selenite and arsenite + selenide at different molar ratios revealed higher overall mutual antagonism of arsenite + selenide toxicity than arsenite + selenite. Despite this protective effect, in comparison to 75Se-selenite, HepG2 cells in suspension were at least 3-fold more efficient at accumulating selenium from reduced 75Se-selenide, and its accumulation was further increased by arsenite. X-ray fluorescence imaging of HepG2 cells also showed that arsenic accumulation, in the presence of selenide, was higher than in the presence of selenite. These results are consistent with a greater intracellular availability of selenide relative to selenite for protection against arsenite, and the formation and retention of a less toxic product, possibly [(GS)2AsSe]-.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Selenium Compounds / Arsenites / Protective Agents / Selenious Acid Limits: Humans Language: En Journal: Chem Biol Interact Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Selenium Compounds / Arsenites / Protective Agents / Selenious Acid Limits: Humans Language: En Journal: Chem Biol Interact Year: 2020 Document type: Article Affiliation country: