Your browser doesn't support javascript.
loading
Killer Cell Immunoglobulin-like Receptor Variants Are Associated with Protection from Symptoms Associated with More Severe Course in Parkinson Disease.
Anderson, Kirsten M; Augusto, Danillo G; Dandekar, Ravi; Shams, Hengameh; Zhao, Chao; Yusufali, Tasneem; Montero-Martín, Gonzalo; Marin, Wesley M; Nemat-Gorgani, Neda; Creary, Lisa E; Caillier, Stacy; Mofrad, Mohammad R K; Parham, Peter; Fernández-Viña, Marcelo; Oksenberg, Jorge R; Norman, Paul J; Hollenbach, Jill A.
Affiliation
  • Anderson KM; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Augusto DG; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Dandekar R; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Shams H; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Zhao C; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Yusufali T; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Montero-Martín G; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304.
  • Marin WM; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Nemat-Gorgani N; Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305.
  • Creary LE; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304.
  • Caillier S; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Mofrad MRK; Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720; and.
  • Parham P; Department of Structural Biology and Immunology, Stanford University, Palo Alto, CA 94305.
  • Fernández-Viña M; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94304.
  • Oksenberg JR; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
  • Norman PJ; Division of Biomedical Informatics and Personalized Medicine, Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.
  • Hollenbach JA; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158; jill.hollenbach@ucsf.edu.
J Immunol ; 205(5): 1323-1330, 2020 09 01.
Article in En | MEDLINE | ID: mdl-32709660
Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease / Polymorphism, Genetic / Receptors, KIR3DL1 Type of study: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limits: Female / Humans / Male / Middle aged Language: En Journal: J Immunol Year: 2020 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease / Polymorphism, Genetic / Receptors, KIR3DL1 Type of study: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limits: Female / Humans / Male / Middle aged Language: En Journal: J Immunol Year: 2020 Document type: Article Country of publication: