Your browser doesn't support javascript.
loading
Estimating the Impact of Nanophases on the Production of Green Cement with High Performance Properties.
Ahmed, Inas A; S Al-Radadi, Najlaa.
Affiliation
  • Ahmed IA; Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia.
  • S Al-Radadi N; Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 14177, Saudi Arabia.
Materials (Basel) ; 13(18)2020 Sep 21.
Article in En | MEDLINE | ID: mdl-32967304
Ordinary Portland cement (OPC) production is energy-intensive and significantly contributes to greenhouse gas emissions. One method to reduce the environmental impact of concrete production is the use of an alternative binder, calcium sulfoaluminate cement, which offers lower CO2 emissions and reduces energy consumption for cement production. This article describes the effect of adding nanophases, namely belite, calcium sulfoaluminate, calcium aluminum monosulfate (ß-C2S, C4A3S, and C4AS, respectively) on OPC's properties. These phases are made from nanosubstances such as nano-SiO2, calcium nitrate (Ca(NO3)2), and nano-aluminum hydroxide Al(OH)3 with gypsum (CaSO4·2H2O). The impact of ß-C2S, C4A3S, and C4AS nanophases on the capabilities of cements was assessed by batch experimentations and IR, XRD, and DSC techniques. The results showed that the substituting of OPC by nano phases (either 10% C4A3S or 10% C4A3S and 10% ß-C2S) reduced setting times, reduced the water/cement ratio and the free-lime contents, and increased the combined water contents as well as compressive strength of the cement pastes. The blends had high early and late compressive strength. The IR, XRD, and DSC analyses of the blends of 10% C4A3S or 10% C4A3S and 10% ß-C2S cement displayed an increase in the hydrate products and the presence of monosulfate hydrate. The addition of 10% C4AS or 10% C4AS and 10% ß-C2S to OPC reduced the setting times, decreased the W/C ratio, free lime, the bulk density, and increased the chemically-combined water and compressive strength. Overall, the results confirmed that the inclusion of the nanophases greatly enhanced the mechanical and durability properties of the OPCs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Materials (Basel) Year: 2020 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Materials (Basel) Year: 2020 Document type: Article Affiliation country: Country of publication: