Mechanisms of the enhanced DDT removal from soils by earthworms: Identification of DDT degraders in drilosphere and non-drilosphere matrices.
J Hazard Mater
; 404(Pt B): 124006, 2021 02 15.
Article
in En
| MEDLINE
| ID: mdl-33068995
The remediation of soil contaminated by 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) remains an important issue in environmental research. Although our previous studies demonstrated that earthworms could enhance the degradation of DDT in soils, the underlying mechanisms and microorganisms involved in these transformation processes are still not clear. Here we studied the transformation of DDT in sterilized/non-sterilized drilosphere and non-drilosphere matrices and identified DDT degraders using the technique of DNA-stable isotope probing. The results show that DDT degradation in non-sterilized drilosphere was quicker than that in their non-drilosphere counterparts. Earthworms enhance DDT removal mainly by improving soil properties, thus stimulating indigenous microorganisms rather than abiotic degradation or tissue accumulating. Ten new genera, including Streptomyces, Streptacidiphilus, Dermacoccus, Brevibacterium, Bacillus, Virgibacillus, were identified as DDT ring cleavage degrading bacteria in the five matrices tested. Bacillus and Dermacoccus may also play vital roles in the dechlorination of DDTs as they were highly enriched during the incubations. The results of this study provide robust evidence for the application of earthworms in remediating soils polluted with DDT and highlight the importance of using combinations of cultivation-independent techniques together with process-based measurements to examine the function of microbes degrading organic pollutants in drilosphere matrices.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oligochaeta
/
Soil Pollutants
Type of study:
Diagnostic_studies
Limits:
Animals
Language:
En
Journal:
J Hazard Mater
Journal subject:
SAUDE AMBIENTAL
Year:
2021
Document type:
Article
Affiliation country:
Country of publication: