Your browser doesn't support javascript.
loading
Laser Desorption Ionization Time-of-Flight Mass Spectrometry of Silver-Doped (GeS2)50(Sb2S3)50 Chalcogenide Glasses.
Huang, Fei; Wágner, Tomás; Frumarová, Bozena; Fraenkl, Max; Kostál, Petr; Havel, Josef.
Affiliation
  • Huang F; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 62500 Brno, Czech Republic.
  • Wágner T; Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic.
  • Frumarová B; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Cs. Legií 565, 53002 Pardubice, Czech Republic.
  • Fraenkl M; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Cs. Legií 565, 53002 Pardubice, Czech Republic.
  • Kostál P; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nám. Cs. Legií 565, 53002 Pardubice, Czech Republic.
  • Havel J; Department of General and Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, Doubravice 41, 53210 Pardubice, Czech Republic.
ACS Omega ; 5(45): 28965-28971, 2020 Nov 17.
Article in En | MEDLINE | ID: mdl-33225126
Mass spectra of (GeS2)50(Sb2S3)50 glass and Ag-doped glasses [5% Ag (GeS2)50(Sb2S3)50 and 15% Ag (GeS2)50(Sb2S3)50] obtained using laser desorption ionization (LDI) time-of-flight coupled with quadrupole ion trap mass spectrometry were studied. The analysis of the mass spectra indicated the formation of Ag a Ge b Sb c S d clusters. In addition to the SbS d + (d = 1 and 2), Sb2S d + (d = 1-3), Sb3S d + (d = 1-5), Sb4S d + (d = 3 and 4), Sb5S2 +, and Sb c + (c = 3 and 5) clusters, various clusters containing Ag, such as Ag a + (a = 1 and 2), AgGeS+, AgSb c + (c = 1, 2, and 4), AgSbS+, AgSb2S d + (d = 1-5), AgSb3S3 +, AgSb4S4 +, Ag2Sb3S d + (d = 4 and 5), Ag4Sb2S3 +, and Ag5SbS3 +, were generated. Moreover, in spite of the five-ninth purity of all glass components, several hydrogenated clusters (SbS3H8 +, Sb4S2H+, Ag2H11 +, Ag2Sb3H4 +, Ag3Sb2H4 +, Ag4Sb2H2 +, and Ag4S3H8 +) and some low-intensity oxidized clusters, such as Sb3O+ and Sb3O5 +, were also detected. When applying LDI on (GeS2)50(Sb2S3)50 glass, no Ge-containing clusters were detected in the positive ion mode, and just one Ge-containing cluster was observed after doping the glass with Ag. Hydrogen plays an important role in the glasses studied. The knowledge gained concerning cluster stoichiometry contributes to the elucidation of the structure of Ag-doped Ge-Sb-S chalcogenide glasses. It should be noted that some of the clusters were considered to be structural fragments. Furthermore, mass spectrometry was complemented with Raman spectroscopy.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Omega Year: 2020 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Omega Year: 2020 Document type: Article Affiliation country: Country of publication: