Your browser doesn't support javascript.
loading
A comprehensive study of the sorption mechanism and thermodynamics of f-element sorption onto K-feldspar.
Neumann, J; Brinkmann, H; Britz, S; Lützenkirchen, J; Bok, F; Stockmann, M; Brendler, V; Stumpf, T; Schmidt, M.
Affiliation
  • Neumann J; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: j.neumann@hzdr.de.
  • Brinkmann H; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: h.brinkmann@hzdr.de.
  • Britz S; Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Theodor-Heuss-Straße 4, 38122 Braunschweig, Germany. Electronic address: Susan.Britz@grs.de.
  • Lützenkirchen J; Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address: johannes.luetzenkirchen@kit.edu.
  • Bok F; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: f.bok@hzdr.de.
  • Stockmann M; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: m.stockmann@hzdr.de.
  • Brendler V; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: v.brendler@hzdr.de.
  • Stumpf T; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: t.stumpf@hzdr.de.
  • Schmidt M; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany. Electronic address: moritz.schmidt@hzdr.de.
J Colloid Interface Sci ; 591: 490-499, 2021 Jun.
Article in En | MEDLINE | ID: mdl-33279214
The mobility of heavy metal contaminants and radionuclides in the environment is directly controlled by their interactions with charged mineral surfaces, hence an assessment of their potential toxicity, e.g. in the context of radioactive waste disposal sites, requires understanding of sorption processes on the molecular level. Here, we investigate the sorption of a variety of rare earth elements (REE) and trivalent actinides (Am, Cm) on K-feldspar using batch sorption, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and a surface complexation model. Initially, a reliable pKa for K-feldspar's surface deprotonation reaction was determined as 2.5 ± 0.02 by column titration experiments, in excellent agreement with a measured pHIEP of 2.8. Batch sorption experiments over a broad range of experimental conditions in terms of mineral grain size, pH, [M3+], ionic radius, solid/liquid ratio, ionic strength, and equilibration procedures were carried out to quantify macroscopic retention. The trivalent d-block element Y, early, mid, and late lanthanides (La, Eu, Nd, Lu), as well as two minor actinides (Am, Cm) were used for batch sorption experiments and showed similar pH dependent uptake behavior, underlining their chemical analogy. In parallel, spectroscopic investigations provided insight into surface speciation. Cm TRLFS spectra indicate the formation of three inner-sphere sorption complexes with increasing hydrolysis. Additionally, a ternary K-feldspar/Cm/silicate complex was found for pH > 10, and batch and spectroscopic data at low pH (<4) point to small amounts of outer sphere sorption complexes. Based on TRLFS data, batch sorption, and titration data, a generic geochemical sorption model was developed, that describes sorption edges for all investigated M3+/K-feldspar systems satisfactorily. The derived stability constants for the binary sorption complexes (logK1-4 = -3.6, -7.7, -11.5, and -17.4, respectively) could successfully be used to reproduce literature data. The stability constants obtained for the surface complexes were included into the database for the Smart Kd-concept, which will further improve the safety assessment of potential repositories for radioactive waste.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2021 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2021 Document type: Article Country of publication: