Sensor-based localization of epidemic sources on human mobility networks.
PLoS Comput Biol
; 17(1): e1008545, 2021 01.
Article
in En
| MEDLINE
| ID: mdl-33503024
We investigate the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Mathematically, we reformulate the problem as one of identifying the relevant component in a multivariate Gaussian mixture model. Focusing on the study of cholera and diseases with similar modes of transmission, we calibrate the parameters of our mixture model using human mobility networks within a stochastic, spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a Bayesian perspective, so that prior information on source location can be incorporated (e.g., reflecting the impact of local conditions). Posterior-based inference is performed, which permits estimates in the form of either individual locations or regions. Importantly, our estimator only requires first-arrival times of the epidemic by putative observers, typically located only at a small proportion of nodes. The proposed method is demonstrated within the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Models, Statistical
/
Disease Transmission, Infectious
/
Epidemics
/
Public Health Surveillance
Type of study:
Prognostic_studies
/
Risk_factors_studies
Limits:
Humans
Country/Region as subject:
Africa
Language:
En
Journal:
PLoS Comput Biol
Journal subject:
BIOLOGIA
/
INFORMATICA MEDICA
Year:
2021
Document type:
Article
Affiliation country:
Country of publication: