Your browser doesn't support javascript.
loading
The ALOXE3 gene variants from patients with Dravet syndrome decrease gene expression and enzyme activity.
Gao, Mei-Mei; Huang, Hao-Ying; Chen, Si-Yu; Tang, Hui-Ling; He, Na; Feng, Wen-Cai; Lu, Ping; Hu, Fei; Yan, Hua-Juan; Long, Yue-Sheng.
Affiliation
  • Gao MM; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Huang HY; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Chen SY; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Tang HL; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • He N; Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
  • Feng WC; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Lu P; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Hu F; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Yan HJ; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China.
  • Long YS; Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changang East Road, Guangzhou, 510260, China. Electronic address: longyuesheng@gzhmu.edu
Brain Res Bull ; 170: 81-89, 2021 05.
Article in En | MEDLINE | ID: mdl-33581311
Aberrant expression or dysfunction of a number of genes in the brain contributes to epilepsy, a common neurological disorder characterized by recurrent seizures. Local overexpression of arachidonate lipoxygenase 3 (ALOXE3), a key enzyme for arachidonic acid (AA) metabolic pathway, alleviates seizure severities. However, the relationship between the ALOXE3 gene mutation and epilepsy has not been reported until now. Here we firstly characterized the promoter of human ALOXE3 gene and found that the ALOXE3 promoter could drive luciferase gene expression in the human HEK-293 and SH-SY5Y cells. We then screened the ALOXE3 promoter region and all coding exons from those patients with Dravet syndrome and identified 5 variants c.-163T > C, c.-50C > G, c.-37G > A, c. + 228G > A and c. + 290G > T in the promoter region and one missense variant c.1939A > G (p.I647 V) in the exon. Of these variants in the promoter region, only -50C > G was a novel variant located on the transcriptional factor NFII-I binding element. Luciferase reporter gene analyses indicated that the c.-50C > G could decrease gene expression by preventing the TFII-I's binding. In addition, the variant p.I647 V was conserved among all analyzed species and located within the ALOXE3 functional domain for catalyzing its substrate. In cultured cell lines, overexpression of ALOXE3 significantly decreased the cellular AA levels and overexpression of ALOXE3-I647 V could restore the AA levels, suggesting that the p.I647 V mutant led to a decrease in enzyme activity. Taken together, the present study proposes that the identified ALOXE3 variants potentially contribute to the AA-pathway-mediated epileptogenesis, which should provide a novel avenue for clinical diagnosis of epilepsy.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Epilepsies, Myoclonic / Lipoxygenase / Mutation Type of study: Prognostic_studies Limits: Humans Language: En Journal: Brain Res Bull Year: 2021 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Epilepsies, Myoclonic / Lipoxygenase / Mutation Type of study: Prognostic_studies Limits: Humans Language: En Journal: Brain Res Bull Year: 2021 Document type: Article Affiliation country: Country of publication: