Your browser doesn't support javascript.
loading
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence.
Casalia, Mariana L; Li, Tina; Ramsay, Harrison; Ross, Pablo J; Paredes, Mercedes F; Baraban, Scott C.
Affiliation
  • Casalia ML; Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143.
  • Li T; Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143.
  • Ramsay H; Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143.
  • Ross PJ; Department of Animal Science, University of California Davis, Davis, California 94143.
  • Paredes MF; Department of Neurology, University of California San Francisco, San Francisco, California 94143.
  • Baraban SC; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California 94143.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Article in En | MEDLINE | ID: mdl-33637558
ABSTRACT
Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Transplantation, Heterologous / Ganglia / Interneurons / Median Eminence Limits: Animals Language: En Journal: J Neurosci Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Transplantation, Heterologous / Ganglia / Interneurons / Median Eminence Limits: Animals Language: En Journal: J Neurosci Year: 2021 Document type: Article