Your browser doesn't support javascript.
loading
PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure.
Ma, Shengtao; Zeng, Zihuan; Lin, Meiqing; Tang, Jian; Yang, Yan; Yu, Yingxin; Li, Guiying; An, Taicheng.
Affiliation
  • Ma S; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Zeng Z; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Lin M; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Tang J; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Yang Y; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Yu Y; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • Li G; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
  • An T; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laborator
Environ Pollut ; 283: 117059, 2021 Aug 15.
Article in En | MEDLINE | ID: mdl-33845288
ABSTRACT
Non-invasive human biomonitoring methods using hair and fingernails as matrices are widely used to assess the exposure of organic contaminants. In this work, a total of 72 human fingernails were collected from workers and near-by residents from a typical electronic waste (e-waste) dismantling site, and were analyzed for human exposure to polycyclic aromatic hydrocarbons (PAHs) and their mono-hydroxyl metabolites (OH-PAHs). The concentrations of PAHs and OH-PAHs were obtained as 7.97-551 and 39.5-3280 ng/g for e-waste workers (EW workers), 7.05-431 and 27.3-3320 ng/g for non-EW workers, 7.93-289 and 124-779 ng/g for adult residents, and 8.88-1280 and 181-293 ng/g for child residents, respectively. The composition profiles of PAHs in the human fingernails of the four groups were similar, with isomers of Phe, Pyr and Fluo being the predominated congeners, while 2-OH-Nap accounted for more than 70% of the total OH-PAHs. These contaminants were found most in the fingernails of EW workers, followed by non-EW workers, adult residents, and child residents, indicating e-waste dismantling activities are the major sources of PAH exposure. However, significantly higher levels of PAHs with 4-6 rings were observed only in workers as opposed to the residents, and a significant correlation between 3-OH-Flu (p < 0.05) and 2-OH-Phe (p < 0.01) in the fingernails and urine was observed, but no significant correlation was found between the concentration of OH-PAHs in matched hair and fingernail samples. In addition, the levels of PAHs in fingernails increased with the age of EW workers. This is the first study to explore the accumulation and distribution of PAHs and OH-PAHs in human fingernails, which would provide valuable insight into non-invasive biomonitoring and health risk assessment of PAHs.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polycyclic Aromatic Hydrocarbons / Electronic Waste Type of study: Risk_factors_studies Limits: Adult / Child / Humans Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Polycyclic Aromatic Hydrocarbons / Electronic Waste Type of study: Risk_factors_studies Limits: Adult / Child / Humans Language: En Journal: Environ Pollut Journal subject: SAUDE AMBIENTAL Year: 2021 Document type: Article