Your browser doesn't support javascript.
loading
Additively Manufactured Lattice-like Subperiosteal Implants for Rehabilitation of the Severely Atrophic Ridge.
Bai, Liyun; Zheng, Lingling; Ji, Ping; Wan, Haoyuan; Zhou, Nazi; Liu, Rui; Wang, Chao.
Affiliation
  • Bai L; Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
  • Zheng L; College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
  • Ji P; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
  • Wan H; ChongQing GongGangZhiHui Additive Manufacturing Technology Research Institute, Chongqing 400060, China.
  • Zhou N; College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
  • Liu R; Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
  • Wang C; Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
ACS Biomater Sci Eng ; 8(2): 912-920, 2022 02 14.
Article in En | MEDLINE | ID: mdl-34984904
Subperiosteal implants represent an alternative implant approach for cases with severe bone atrophy. Although some successful clinical cases have been reported, the biomechanical stability of subperiosteal implants remains unclear, and more data are needed to confirm the feasibility of this approach. Therefore, this study investigated the biomechanical characteristics of subperiosteal implants based on histological observation, clinical cases, and finite element analysis. Finite element analysis indicated that subperiosteal implants with a lattice-like structure could better disperse the stress to the underlying bone surface. A novel customized subperiosteal implant was then digitally designed and fabricated using an additive manufacturing technology. Six beagle dogs received such customized subperiosteal implants. Histological and microcomputed tomography examination showed new bone growth into and around the implant. Patient-specific subperiosteal implants were placed into the edentulous mandibular bone, with immediate loading. The implant was functional, without pain or infection, over a 12 month observation period. Images taken 12 months post-operatively showed new bone formation and osseointegration of the device. This indicated that 3D-printed lattice-like subperiosteal implants have sufficient stability for the rehabilitation of severely atrophic ridges.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dental Implants / Osseointegration / Jaw, Edentulous Limits: Animals Language: En Journal: ACS Biomater Sci Eng Year: 2022 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dental Implants / Osseointegration / Jaw, Edentulous Limits: Animals Language: En Journal: ACS Biomater Sci Eng Year: 2022 Document type: Article Affiliation country: Country of publication: