Your browser doesn't support javascript.
loading
Feasibility testing of the Inspired Therapeutics NeoMate mechanical circulatory support system for neonates and infants.
Monreal, Gretel; Koenig, Steven C; Slaughter, Mark S; Morello, Gino F; Prina, Steven R; Tompkins, Landon H; Huang, Jiapeng; Gellman, Barry N; Dasse, Kurt A.
Affiliation
  • Monreal G; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky, United States of America.
  • Koenig SC; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky, United States of America.
  • Slaughter MS; Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States of America.
  • Morello GF; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky, United States of America.
  • Prina SR; Veritium Research LLC, Fort Lee, New Jersey, United States of America.
  • Tompkins LH; BLDC Designs LLC, Rocklin, California, United States of America.
  • Huang J; Inspired Therapeutics LLC, Merritt Island, Florida, United States of America.
  • Gellman BN; Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, Kentucky, United States of America.
  • Dasse KA; Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, Kentucky, United States of America.
PLoS One ; 17(5): e0266822, 2022.
Article in En | MEDLINE | ID: mdl-35544516
ABSTRACT
Inspired Therapeutics (Merritt Island, FL) is developing a mechanical circulatory support (MCS) system designed as a single driver with interchangeable, extracorporeal, magnetically levitated pumps. The NeoMate system design features an integrated centrifugal rotary pump, motor, and controller that will be housed in a single compact unit. Conceptually, the primary innovation of this technology will be the combination of disposable, low-cost pumps for use with a single, multi-functional, universal controller to support multiple pediatric cardiopulmonary indications. In response to the paucity of clinically available pediatric devices, Inspired Therapeutics is specifically targeting the underserved neonate and infant heart failure (HF) patient population first. In this article, we present the development of the prototype Inspired Therapeutics NeoMate System for pediatric left ventricular assist device (LVAD) support, and feasibility testing in static mock flow loops (H-Q curves), dynamic mock flow loops (hemodynamics), and in an acute healthy ovine model (hemodynamics and clinical applicability). The resultant hydrodynamic and hemodynamic data demonstrated the ability of this prototype pediatric LVAD and universal controller to function over a range of rotary pump speeds (500-6000 RPM), to provide pump flow rates of up to 2.6 L/min, and to volume unload the left ventricle in acute animals. Key engineering challenges observed and proposed solutions for the next design iteration are also presented.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Heart-Assist Devices / Heart Failure Limits: Animals / Child / Humans / Newborn Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Heart-Assist Devices / Heart Failure Limits: Animals / Child / Humans / Newborn Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2022 Document type: Article Affiliation country: