Your browser doesn't support javascript.
loading
Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy.
Zhu, Xiaoyi; Huang, Qiang; DiSpirito, Anthony; Vu, Tri; Rong, Qiangzhou; Peng, Xiaorui; Sheng, Huaxin; Shen, Xiling; Zhou, Qifa; Jiang, Laiming; Hoffmann, Ulrike; Yao, Junjie.
Affiliation
  • Zhu X; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Huang Q; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • DiSpirito A; Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
  • Vu T; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Rong Q; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Peng X; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Sheng H; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Shen X; Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
  • Zhou Q; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
  • Jiang L; Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
  • Hoffmann U; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
  • Yao J; Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. laiming_jiang@foxmail.com.
Light Sci Appl ; 11(1): 138, 2022 May 17.
Article in En | MEDLINE | ID: mdl-35577780
ABSTRACT
High-speed high-resolution imaging of the whole-brain hemodynamics is critically important to facilitating neurovascular research. High imaging speed and image quality are crucial to visualizing real-time hemodynamics in complex brain vascular networks, and tracking fast pathophysiological activities at the microvessel level, which will enable advances in current queries in neurovascular and brain metabolism research, including stroke, dementia, and acute brain injury. Further, real-time imaging of oxygen saturation of hemoglobin (sO2) can capture fast-paced oxygen delivery dynamics, which is needed to solve pertinent questions in these fields and beyond. Here, we present a novel ultrafast functional photoacoustic microscopy (UFF-PAM) to image the whole-brain hemodynamics and oxygenation. UFF-PAM takes advantage of several key engineering innovations, including stimulated Raman scattering (SRS) based dual-wavelength laser excitation, water-immersible 12-facet-polygon scanner, high-sensitivity ultrasound transducer, and deep-learning-based image upsampling. A volumetric imaging rate of 2 Hz has been achieved over a field of view (FOV) of 11 × 7.5 × 1.5 mm3 with a high spatial resolution of ~10 µm. Using the UFF-PAM system, we have demonstrated proof-of-concept studies on the mouse brains in response to systemic hypoxia, sodium nitroprusside, and stroke. We observed the mouse brain's fast morphological and functional changes over the entire cortex, including vasoconstriction, vasodilation, and deoxygenation. More interestingly, for the first time, with the whole-brain FOV and micro-vessel resolution, we captured the vasoconstriction and hypoxia simultaneously in the spreading depolarization (SD) wave. We expect the new imaging technology will provide a great potential for fundamental brain research under various pathological and physiological conditions.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Light Sci Appl Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Light Sci Appl Year: 2022 Document type: Article Affiliation country: