Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies.
Commun Med (Lond)
; 2: 78, 2022.
Article
in En
| MEDLINE
| ID: mdl-35814295
Background: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. Methods: Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. Results: Automated analysis showed substantial agreement with human experts (Cohen's kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). Conclusions: Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false-positive and false-negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool for improved accuracy for population-level community surveillance.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Risk_factors_studies
Language:
En
Journal:
Commun Med (Lond)
Year:
2022
Document type:
Article
Country of publication: