Your browser doesn't support javascript.
loading
Generation of an Adequate Perfusion Network within Dense Collagen Hydrogels Using Thermoplastic Polymers as Sacrificial Matrix to Promote Cell Viability.
Camman, Marie; Marquaille, Pierre; Joanne, Pierre; Agbulut, Onnik; Hélary, Christophe.
Affiliation
  • Camman M; Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, CNRS, Sorbonne Université, F-75005 Paris, France.
  • Marquaille P; Biological Adaptation and Ageing, Inserm U1164, UMR 8256, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, F-75005 Paris, France.
  • Joanne P; Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, CNRS, Sorbonne Université, F-75005 Paris, France.
  • Agbulut O; Biological Adaptation and Ageing, Inserm U1164, UMR 8256, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, F-75005 Paris, France.
  • Hélary C; Biological Adaptation and Ageing, Inserm U1164, UMR 8256, CNRS, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, F-75005 Paris, France.
Bioengineering (Basel) ; 9(7)2022 Jul 14.
Article in En | MEDLINE | ID: mdl-35877364
ABSTRACT
Dense collagen hydrogels are promising biomaterials for several tissue-engineering applications. They exhibit high mechanical properties, similar to physiological extracellular matrices, and do not shrink under cellular activity. However, they suffer from several drawbacks, such as weak nutrient and O2 diffusion, impacting cell survival. Here, we report a novel strategy to create a perfusion system within dense and thick collagen hydrogels to promote cell viability. The 3D printing of a thermoplastic filament (high-impact polystyrene, HIPS) with a three-wave shape is used to produce an appropriate sacrificial matrix. The HIPS thermoplastic polymer allows for good shape fidelity of the filament and does not collapse under the mechanical load of the collagen solution. After the collagen gels around the filament and dissolves, a channel is generated, allowing for adequate and rapid hydrogel perfusion. The dissolution process does not alter the collagen hydrogel's physical or chemical properties, and the perfusion is associated with an increased fibroblast survival. Here, we report the novel utilization of thermoplastics to generate a perfusion network within biomimetic collagen hydrogels.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Bioengineering (Basel) Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Bioengineering (Basel) Year: 2022 Document type: Article Affiliation country: