Your browser doesn't support javascript.
loading
Equilibria of semi-volatile isothiazolinones between air and glass surfaces measured by gas chromatography and Raman spectroscopy.
Sohn, Seungwoon; Huong, Vu Thi; Nguyen, Phuong-Dong; Ly, Nguyen Hoàng; Jang, Soonmin; Lee, Hyewon; Lee, Cheolmin; Lee, Jung Il; Vasseghian, Yasser; Joo, Sang-Woo; Zoh, Kyung-Duk.
Affiliation
  • Sohn S; Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
  • Huong VT; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
  • Nguyen PD; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
  • Ly NH; Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea.
  • Jang S; Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea.
  • Lee H; Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea.
  • Lee C; Department of Chemical & Biological Engineering, Seokyeong University, Seoul, 02713, Republic of Korea.
  • Lee JI; Korea Testing & Research Institute, Gwacheon, 13810, Republic of Korea.
  • Vasseghian Y; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India;
  • Joo SW; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea. Electronic address: sjoo@ssu.ac.kr.
  • Zoh KD; Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea. Electronic address: zohkd@snu.ac.kr.
Environ Res ; 218: 114908, 2023 02 01.
Article in En | MEDLINE | ID: mdl-36442521
ABSTRACT
Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of ∼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at ∼1585 cm-1 and ∼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spectrum Analysis, Raman / Volatile Organic Compounds Type of study: Prognostic_studies Limits: Humans Language: En Journal: Environ Res Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Spectrum Analysis, Raman / Volatile Organic Compounds Type of study: Prognostic_studies Limits: Humans Language: En Journal: Environ Res Year: 2023 Document type: Article