Your browser doesn't support javascript.
loading
Synergistic Surface Modification of Tin-Lead Perovskite Solar Cells.
Hu, Shuaifeng; Zhao, Pei; Nakano, Kyohei; Oliver, Robert D J; Pascual, Jorge; Smith, Joel A; Yamada, Takumi; Truong, Minh Anh; Murdey, Richard; Shioya, Nobutaka; Hasegawa, Takeshi; Ehara, Masahiro; Johnston, Michael B; Tajima, Keisuke; Kanemitsu, Yoshihiko; Snaith, Henry J; Wakamiya, Atsushi.
Affiliation
  • Hu S; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Zhao P; Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
  • Nakano K; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan.
  • Oliver RDJ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
  • Pascual J; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Smith JA; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
  • Yamada T; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Truong MA; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Murdey R; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Shioya N; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Hasegawa T; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Ehara M; Research Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan.
  • Johnston MB; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
  • Tajima K; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan.
  • Kanemitsu Y; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
  • Snaith HJ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
  • Wakamiya A; Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
Adv Mater ; 35(9): e2208320, 2023 Mar.
Article in En | MEDLINE | ID: mdl-36482007
ABSTRACT
Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. In this work, the top surface treatment of mixed tin-lead (≈1.26 eV) halide perovskite films for p-i-n solar cells is studied. Charge extraction is promoted by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C60 pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ≈92% of the radiative limit for the bandgap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 h of storage in N2 and encapsulated cells retaining 90% efficiency after >450 h of storage in air. Intriguingly, CPTA preferentially binds to Sn2+ sites at film surface over Pb2+ due to the energetically favored exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and this knowledge is used to fabricate state-of-the-art solar cells.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article Affiliation country: