Your browser doesn't support javascript.
loading
A sexually selected male weapon characterized by strong additive genetic variance and no evidence for sexually antagonistic polyphenic maintenance.
Parrett, Jonathan M; Lukasiewicz, Aleksandra; Chmielewski, Sebastian; Szubert-Kruszynska, Agnieszka; Maurizio, Paul L; Grieshop, Karl; Radwan, Jacek.
Affiliation
  • Parrett JM; Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
  • Lukasiewicz A; Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
  • Chmielewski S; Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
  • Szubert-Kruszynska A; Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
  • Maurizio PL; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, Illinois, United States.
  • Grieshop K; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.
  • Radwan J; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
Evolution ; 77(6): 1289-1302, 2023 06 01.
Article in En | MEDLINE | ID: mdl-36848265
ABSTRACT
Sexual selection and sexual antagonism are important drivers of eco-evolutionary processes. The evolution of traits shaped by these processes depends on their genetic architecture, which remains poorly studied. Here, implementing a quantitative genetics approach using diallel crosses of the bulb mite, Rhizoglyphus robini, we investigated the genetic variance that underlies a sexually selected weapon that is dimorphic among males and female fecundity. Previous studies indicated that a negative genetic correlation between these two traits likely exists. We found male morph showed considerable additive genetic variance, which is unlikely to be explained solely by mutation-selection balance, indicating the likely presence of large-effect loci. However, a significant magnitude of inbreeding depression also indicates that morph expression is likely to be condition-dependent to some degree and that deleterious recessives can simultaneously contribute to morph expression. Female fecundity also showed a high degree of inbreeding depression, but the variance in female fecundity was mostly explained by epistatic effects, with very little contribution from additive effects. We found no significant genetic correlation, nor any evidence for dominance reversal, between male morph and female fecundity. The complex genetic architecture underlying male morph and female fecundity in this system has important implications for our understanding of the evolutionary interplay between purifying selection and sexually antagonistic selection.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acaridae / Mites Limits: Animals Language: En Journal: Evolution Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acaridae / Mites Limits: Animals Language: En Journal: Evolution Year: 2023 Document type: Article Affiliation country: